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Crowd dynamics

Model to reproduce known pedestrian behavior:

evacuation dynamics: seeking the fastest route, avoiding high densities
and borders (discomfort)

desired speed (∼ 1.34m/s), depending on situations

lines and more general patterns formation: self-organization dynamics
which minimize interactions with the opposite stream

oscillations at bottlenecks in opposite streams passing through a
narrow passage

collective auto-organization at intersections: increasing the average
efficiency

etc ...

(Helbing-Farkas-Molnar-Vicsek 2002)
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Panic

Crowd behavior changes in panic situations and becomes irrational:

getting nervous → “freezing by heating”

people try to move faster → clogging → “faster is slower”

jams building up at exits → fatal pressures

escape slowed down

herding behavior (to follow others) → ignorance of available exits

“phantom panics” due to counterflow and impatience

(Helbing-Farkas-Molnar-Vicsek 2002)
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21st century main human stampedes

Date Place Venue Deaths Reason
2001 Accra, Ghana stadium 126 tear gas
2003 West Warwick, RI nightclub 100 fire
2004 Mecca, Saudi Arabia Jamarat Bridge 251 overcrowding
2005 Maharashtra,India religious procession 265 overcrowding
2005 Baghdad, Iraqi religious procession 953 rumors of bomb
2006 Mecca, Saudi Arabia Jamarat Bridge 345 overcrowding
2006 Pasig CityPhilippines stadium 78 rush for tickets
2008 Himachal Pradesh, India religious procession 162 panic
2008 Jodhpur, India religious procession 147 rumors of bomb
2010 Duisburg, Germany Love Parade 21 mass panic
2010 Phnom Penh, Cambodia water festival 347 panic
2011 Kerala, India religious procession 106 car in the crowd

Source: http://en.wikipedia.org/wiki/Stampede
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Pedestrian flow models

Three possible scales:

Microscopic:
social force models, cellular automata, agent-based models...
ODEs system
numerical simulations (http://angel.elte.hu/~panic/pedsim/)
many parameters
huge literature:
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Macroscopic models

[

number of individuals in Ω ⊂ R
2 at time t

]

=

∫

Ω

ρ(t,x) dx

must be conserved!
∫
Ω

ρ(t2, x)dx =

∫
Ω

ρ(t1, x)dx −

∫
t2

t1

∫
∂Ω

f(t, σ) · ~n dσdt

⇓

divergence theorem for (ρ, f)

⇓

∫ t2

t1

∫ b

a

∂tρ+ divxf dx dt = 0

8 / 40
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Macroscopic models

Conservation law:
∂tρ+ divxf(t x) = 0

Flux-density relation: f(t,x) = ρ(t,x)~V (t,x)

Density must be non-negative and bounded: 0 ≤ ρ(t,x) ≤ ρmax,
∀x, t > 0 (maximum principle?)

Different from fluid dynamics:
preferred direction
no conservation of momentum / energy
no viscosity
n ≪ 6 · 1023
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Continuum hypothesis
n≪ 6 · 1023 but ...
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Continuum hypothesis
n≪ 6 · 1023 but ...

Portland, Oregon, May 2008
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Scalar conservation laws

We deal with a PDE equation of the form

∂tρ+ divxf(t,x, ρ) = 0

ρ(0,x) = ρ0(x)

+BC

where t ∈ [0,+∞[, x = (x1, x2) ∈ R
2,

ρ = ρ(t,x) ∈ R conserved quantity

f : [0,+∞[ ×R2 × R→ IR2 flux

Main features:

ρ NOT smooth

existence ← weak solutions

uniqueness ← entropy conditions
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Kružkov theory (1970)

smooth flux: f ∈ C1c
(
[0,+∞[ ×R2 × R

)

entropy weak solution: ∀k ∈ R and ϕ ∈ C1c
(
[0,+∞[ ×R2

)

∫ +∞

0

∫∫

R2

|ρ− k|∂tϕ+ sgn(ρ− k)(fi(t,x, ρ)− fi(t,x, k))∂xiϕ

−sgn(ρ− k)∂xifi ϕ dxdt ≥ 0

well posedness: existence, uniqueness, stability
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Eikonal equation

Consider Ω ⊂ R
2 walking facility (∂Ω = ∂Ωwall ∪ ∂Ωin ∪ ∂Ωexit);

we look for φ : Ω→ R solution of the PDE equation

|∇xφ| = C(x) in Ω

φ(t,x) = 0 for x ∈ ∂Ωexit

where C = C(x) ≥ 0 is the running cost:
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2 walking facility (∂Ω = ∂Ωwall ∪ ∂Ωin ∪ ∂Ωexit);

we look for φ : Ω→ R solution of the PDE equation

|∇xφ| = C(x) in Ω

φ(t,x) = 0 for x ∈ ∂Ωexit

where C = C(x) ≥ 0 is the running cost:

the solution φ(x) represents the (weighted) distance of the position x from
the target ∂Ωexit

if C(x) ≡ 1 and Ω concave then φ(x) = d(x, ∂Ωexit)

(existence and uniqueness under some regularity assumption on C)
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Eikonal equation: level set curves for |∇xφ| = 1
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Eikonal equation: vector field ~N = − ∇xφ
|∇xφ|

17 / 40



Introduction Models Conservation laws Eikonal equation Macroscopic models Tests Conclusion

Outline of the talk

1 Human crowds dynamics

2 Models

3 Conservation laws

4 Eikonal equation

5 Examples of macroscopic models

6 Numerical tests

7 Conclusion and perspectives

18 / 40



Introduction Models Conservation laws Eikonal equation Macroscopic models Tests Conclusion

Hughes’ model (2002)

Mass conservation

∂tρ+ divx

(

ρ~V (ρ)
)

= 0 in R
+ × Ω

where

~V (ρ) = v(ρ) ~N and v(ρ) = vmax

(

1−
ρ

ρmax

)

Direction of the motion: ~N = −
∇xφ

|∇xφ|
is given by

|∇xφ| =
1

v(ρ)
in Ω

φ(t,x) = 0 for x ∈ ∂Ωexit,∀t ≥ 0

pedestrians tend to minimize their estimated travel time to the exit

pedestrians temper their estimated travel time avoiding high densities

CRITICS: instantaneous global information on entire domain
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Hughes’ model

Evolution of the velocity field:

T = 0.2

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 0.5

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 0.8

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Hughes’ model

Evolution of the velocity field:

T = 1.1

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Dynamic model with memory effect
Mass conservation

∂tρ+ divx

(

ρ~V (ρ)
)

= 0 in R
+ × Ω

where

~V (ρ) = v(ρ) ~N and v(ρ) = vmax

(

1−
ρ

ρmax

)

Direction of the motion: ~N = −
∇x(φ+ ωD)

|∇x(φ+ ωD)|
where

|∇xφ| =
1

vmax
in Ω, φ(x) = 0 for x ∈ ∂Ωexit,

D = D(ρ) =
1

v(ρ)
+ βρ2 discomfort

pedestrians seek to minimize their estimated travel time based on their
knowledge of the walking domain

pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)
21 / 40



Introduction Models Conservation laws Eikonal equation Macroscopic models Tests Conclusion

Second order model

Euler equations with relaxation

∂tρ+∇ · (ρ~V ) = 0

∂t
~V + (~V · ∇)~V + c2(ρ)

∇ρ

ρ
=

ve(ρ) ~N − ~V

τ

(Jiang-Zhang-Wong-Liu, 2010)
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Second order model

Euler equations with relaxation

∂tρ+∇ · (ρ~V ) = 0

∂t
~V + (~V · ∇)~V + c2(ρ)

∇ρ

ρ
︸ ︷︷ ︸

anticipation
factor

=
ve(ρ) ~N − ~V

τ
︸ ︷︷ ︸

relaxation
term

where

ve(ρ) = vmax exp

(

−γ

(
ρ

ρmax

)2
)

, c(ρ) = c0

(
ρ

ρmax

)β

and boundary conditions: ∇xρ · ~n = 0 and ~V · ~n = 0

(Jiang-Zhang-Wong-Liu, 2010)
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The fastest route ...

... needs not to be the shortest!
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Braess’ paradox?

A column in front of the exit can reduce inter-pedestrians pressure and
evacuation time?

|∇xφ| = 1 ∇x(φ+ ωD)

|∇xφ| = 1/v(ρ)

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Braess’ paradox?

Evacuation time:

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)
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Panic: a 1D toy model

Mass conservation
∂tρ+ ∂x(ρv(ρ)) = 0

Introduce panic states: [0, R]→ [0, R∗]

Extend speed law

Change the evolution → non-classical shocks

(Colombo-Rosini, 2005)
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Panic: a 1D toy model

Experimental data:

(Helbing-Johansson-Al Abideen, Physical Review E, 2007)
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Panic: a 1D toy model

Colombo-Goatin-Rosini ’09: Braess paradox

���������
���������
���������
���������

���������
���������
���������
���������

0 xd Da b

∂tρ+ ∂xf(ρ) = 0 f (ρ(t, d)) ≤ q (ρ(t, d))
ρ(0, x) = ρ0(x) f (ρ(t,D)) ≤ Q (ρ(t,D))

q(ρ) =

{
q̂ if ρ ∈ [0, R]
q̌ if ρ ∈ ]R,R∗]

Q(ρ) =

{
Q̂ if ρ ∈ [0, R]
Q̌ if ρ ∈ ]R,R∗]

q̂ > q̌ Q̂ > Q̌
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Evacuation without obstacle: panic appears
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Evacuation with obstacle: no panic
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Macroscopic models of pedestrians flows

PDEs describing the evolution of macroscopic quantities (e.g. density):

∂tu(t,x) + divxf(u(t,x)) = 0 t > 0, x ∈ IRD, u ∈ IRn

based on the continuum hypothesis

give global description of spatio-temporal evolution

good agreement with empirical data

suitable for posing control and optimization problems

BUT : no general analytical theory for

multi-D hyperbolic systems (n > 1)

control of conservation laws

able to recover complexity features of crowd dynamics?
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Multi-scale approach

Micro-to-macro scaling:

interactions among individuals at microscopic scale

emergence of self-organized flow patterns at macroscopic scale

Outer-to-inner scaling:

local macroscopic distribution of the crowd can modify interaction rules

non-linearly additive microscopic pedestrian interactions
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Multi-scale time-evolving probability measures

Probability distribution of pedestrians

µt = θmt + (1− θ)Mt where

{

mt =
∑N

j=1 δPj(t) microscopic mass

dMt(x) = ρ(t,x)dx macroscopic mass

Governing equation: probability conservation deduced from
individual-based modeling

∂tµt +∇ · (µt
~Vt) = 0

~Vt(x) = ~Vd(x) +N

∫

BR(x)

K(x,y)dµt(y)

(Cristiani-Piccoli-Tosin, 2011)
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{

mt =
∑N

j=1 δPj(t) microscopic mass

dMt(x) = ρ(t,x)dx macroscopic mass

Governing equation: probability conservation deduced from
individual-based modeling

∂tµt +∇ · (µt
~Vt) = 0

~Vt(x) = ~Vd(x) +N

∫

BR(x)

K(x,y)dµt(y)

︸ ︷︷ ︸

interaction
kernel

(Cristiani-Piccoli-Tosin, 2011)
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Dynamics at bottlenecks

Two groups with opposite directions passing through a door:

θ = 0: only macro

θ = 1: only micro

θ = 0.3: micro-macro

(Cristiani-Piccoli-Tosin, 2011)
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Dynamics at intersections

Two groups with perpendicular directions crossing each other:

θ = 0: only macro

θ = 1: only micro

micro-macro

(Cristiani-Piccoli-Tosin, 2011)
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Concluding remarks

Models should:

reproduce (qualitatively) emerging phenomena observed in real
situations

account for individual choices that may affect the whole system

display few parameters to be identified by experiments

be validated on empirical data
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Concluding remarks

Models should:

reproduce (qualitatively) emerging phenomena observed in real
situations

account for individual choices that may affect the whole system

display few parameters to be identified by experiments

be validated on empirical data

Much still have to be done!
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Thank you for your attention!
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