Tests

Human Activity and Vision Summer School

Macroscopic models for crowd behavior simulation

Paola Goatin INRIA Sophia Antipolis - Méditerranée paola.goatin@inria.fr

Sophia Antipolis, October 5, 2012

Outline of the talk

- 3 Conservation laws
- ④ Eikonal equation
- Examples of macroscopic models
- O Numerical tests
- Conclusion and perspectives

Crowd dynamics

Model to reproduce known pedestrian behavior:

- evacuation dynamics: seeking the *fastest* route, avoiding high densities and borders (discomfort)
- desired speed (~ 1.34m/s), depending on situations
- lines and more general patterns formation: self-organization dynamics which minimize interactions with the opposite stream
- <u>oscillations at bottlenecks</u> in opposite streams passing through a narrow passage
- collective auto-organization at intersections: increasing the average efficiency
- etc ...

(Helbing-Farkas-Molnar-Vicsek 2002)

Crowd behavior changes in **panic** situations and becomes irrational:

- getting nervous \rightarrow "freezing by heating"
- people try to move faster \rightarrow clogging \rightarrow "faster is slower"
- jams building up at exits \rightarrow fatal pressures
- escape slowed down
- herding behavior (to follow others) \rightarrow ignorance of available exits
- "phantom panics" due to counterflow and impatience

(Helbing-Farkas-Molnar-Vicsek 2002)

Models Conservation laws

laws Eikona

Eikonal equation

Macroscopic models

Tests Conclusion

21st century main human stampedes

Date	Place	Venue	Deaths	Reason
2001	Accra, Ghana	stadium	126	tear gas
2003	West Warwick, RI	nightclub	100	fire
2004	Mecca, Saudi Arabia	Jamarat Bridge	251	overcrowding
2005	Maharashtra,India	religious procession	265	overcrowding
2005	Baghdad, Iraqi	religious procession	953	rumors of bomb
2006	Mecca, Saudi Arabia	Jamarat Bridge	345	overcrowding
2006	Pasig CityPhilippines	stadium	78	rush for tickets
2008	Himachal Pradesh, India	religious procession	162	panic
2008	Jodhpur, India	religious procession	147	rumors of bomb
2010	Duisburg, Germany	Love Parade	21	mass panic
2010	Phnom Penh, Cambodia	water festival	347	panic
2011	Kerala, India	religious procession	106	car in the crowd

Source: http://en.wikipedia.org/wiki/Stampede

Outline of the talk

Models

- 3 Conservation laws
- ④ Eikonal equation
- Examples of macroscopic models
- O Numerical tests
- Conclusion and perspectives

Pedestrian flow models

- Microscopic:
 - social force models, cellular automata, agent-based models...
 - ODEs system
 - numerical simulations (http://angel.elte.hu/~panic/pedsim/)
 - many parameters
 - huge literature:

Pedestrian flow models

- Microscopic:
 - social force models, cellular automata, agent-based models...
 - ODEs system
 - numerical simulations (http://angel.elte.hu/~panic/pedsim/)
 - many parameters
 - huge literature: Hartmann, Helbing, Hoogendorn-Bovy, Maury-Venel, Nagatani, Schadschneider, Schreckenberg ...

Pedestrian flow models

- Microscopic:
 - social force models, cellular automata, agent-based models...
 - ODEs system
 - numerical simulations (http://angel.elte.hu/~panic/pedsim/)
 - many parameters
 - huge literature: Hartmann, Helbing, Hoogendorn-Bovy, Maury-Venel, Nagatani, Schadschneider, Schreckenberg ...

- Macroscopic: PDEs from fluid dynamics, optimal transport, mean-field games
 - analytical theory
 - few parameters
 - suitable to formulate control and optimization problems
 - more recent research: Bellomo-Dogbé, Bruno-Venuti, Colombo-Rosini, (Henderson), Hughes, Kachroo, Maury, Piccoli, Santambrogio, Treuille-Cooper-Popovič...

Pedestrian flow models

- Microscopic:
 - social force models, cellular automata, agent-based models...
 - ODEs system
 - numerical simulations (http://angel.elte.hu/~panic/pedsim/)
 - many parameters
 - huge literature: Hartmann, Helbing, Hoogendorn-Bovy, Maury-Venel, Nagatani, Schadschneider, Schreckenberg ...
- Kinetic: distribution function of the microscopic states
 - Bellomo-Dogbé, Bellomo-Bellouquid, Carrillo, Degond ...
- Macroscopic: PDEs from fluid dynamics, optimal transport, mean-field games
 - analytical theory
 - few parameters
 - suitable to formulate control and optimization problems
 - more recent research: Bellomo-Dogbé, Bruno-Venuti, Colombo-Rosini, (Henderson), Hughes, Kachroo, Maury, Piccoli, Santambrogio, Treuille-Cooper-Popovič...

Tests

Macroscopic models

[number of individuals in
$$\Omega \subset \mathbb{R}^2$$
 at time t] = $\int_{\Omega} \rho(t, \mathbf{x}) d\mathbf{x}$

must be conserved!

Tests

Macroscopic models

• Conservation law:

 $\partial_t \rho + \operatorname{div}_{\mathbf{x}} \mathbf{f}(t\,x) = 0$

- Flux-density relation: $\mathbf{f}(t, \mathbf{x}) = \rho(t, \mathbf{x}) \vec{V}(t, \mathbf{x})$
- Density must be non-negative and bounded: $0 \le \rho(t, \mathbf{x}) \le \rho_{\max}$, $\forall \mathbf{x}, t > 0 \text{ (maximum principle?)}$
- Different from fluid dynamics:
 - preferred direction
 - no conservation of momentum / energy
 - no viscosity
 - $n \ll 6 \cdot 10^{23}$

Continuum hypothesis

 $n \ll 6 \cdot 10^{23}$ but ...

Models

Continuum hypothesis

 $n \ll 6 \cdot 10^{23}$ but ...

Models

Portland, Oregon, May 2008

Outline of the talk

3 Conservation laws

Models

- Eikonal equation
- **Examples of macroscopic models**
- 6 Numerical tests
- Conclusion and perspectives

Models Conservation laws

Eikonal equation

Macroscopic models

Conclusion

Tests

Scalar conservation laws

We deal with a PDE equation of the form

 $\partial_t \rho + \operatorname{div}_{\mathbf{x}} \mathbf{f}(t, \mathbf{x}, \rho) = 0$ $\rho(0, \mathbf{x}) = \rho_0(\mathbf{x})$ +BC

where
$$t \in [0, +\infty[, \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2,$$

 $\rho = \rho(t, \mathbf{x}) \in \mathbb{R}$ conserved quantity
 $\mathbf{f} : [0, +\infty[\times \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ flux

Main features:

- ρ NOT smooth
- existence \leftarrow weak solutions
- uniqueness \leftarrow entropy conditions

ntroduction Models

Conservation laws

laws Eikona

Eikonal equation

Conclusion

Tests

Kružkov theory (1970)

- smooth flux: $\mathbf{f} \in \mathcal{C}_c^1 \left([0, +\infty[\times \mathbb{R}^2 \times \mathbb{R}) \right)$
- entropy weak solution: $\forall k \in \mathbb{R} \text{ and } \varphi \in \mathcal{C}_c^1\left([0, +\infty[\times \mathbb{R}^2) \right)$

$$\int_{0}^{+\infty} \iint_{\mathbb{R}^{2}} |\rho - \mathbf{k}| \partial_{t} \varphi + \operatorname{sgn}(\rho - \mathbf{k}) (\mathbf{f}_{i}(t, \mathbf{x}, \rho) - \mathbf{f}_{i}(t, \mathbf{x}, k)) \partial_{x_{i}} \varphi$$
$$-\operatorname{sgn}(\rho - \mathbf{k}) \partial_{x_{i}} \mathbf{f}_{i} \ \varphi \ d\mathbf{x} dt \geq 0$$

• well posedness: existence, uniqueness, stability

Outline of the talk

4 Eikonal equation

Examples of macroscopic models

6 Numerical tests

Conclusion and perspectives

Tests

Eikonal equation

Consider $\Omega \subset \mathbb{R}^2$ walking facility $(\partial \Omega = \partial \Omega_{wall} \cup \partial \Omega_{in} \cup \partial \Omega_{exit})$; we look for $\phi : \Omega \to \mathbb{R}$ solution of the PDE equation

 $|\nabla_{\mathbf{x}}\phi| = C(\mathbf{x}) \quad \text{in } \Omega$

 $\phi(t, \mathbf{x}) = 0 \qquad \text{for } \mathbf{x} \in \partial \Omega_{exit}$

where $C = C(\mathbf{x}) \ge 0$ is the running cost:

Tests

Eikonal equation

Consider $\Omega \subset \mathbb{R}^2$ walking facility $(\partial \Omega = \partial \Omega_{wall} \cup \partial \Omega_{in} \cup \partial \Omega_{exit});$ we look for $\phi: \Omega \to \mathbb{R}$ solution of the PDE equation

 $|\nabla_{\mathbf{x}}\phi| = C(\mathbf{x})$ in Ω

 $\phi(t, \mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega_{exit}$

where $C = C(\mathbf{x}) \ge 0$ is the running cost:

the solution $\phi(\mathbf{x})$ represents the (weighted) distance of the position \mathbf{x} from the target $\partial \Omega_{exit}$

if $C(\mathbf{x}) \equiv 1$ and Ω concave then $\phi(\mathbf{x}) = d(\mathbf{x}, \partial \Omega_{exit})$

(existence and uniqueness under some regularity assumption on C)

Conservation laws

Models

Eikonal equation

Macroscopic models

Conclusion Tests

Eikonal equation: level set curves for $|\nabla_{\mathbf{x}}\phi| = 1$

Tests

Outline of the talk

- 3 Conservation laws
- ④ Eikonal equation
- **5** Examples of macroscopic models
- 6 Numerical tests
- Conclusion and perspectives

Models Conservation laws

Conclusion

Hughes' model (2002)

Mass conservation

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion:
$$\vec{N} = -\frac{\nabla_{\mathbf{x}}\phi}{|\nabla_{\mathbf{x}}\phi|}$$
 is given by
 $|\nabla_{\mathbf{x}}\phi| = \frac{1}{v(\rho)}$ in Ω
 $\phi(t, \mathbf{x}) = 0$ for $\mathbf{x} \in \partial\Omega_{exit}, \forall t \ge 0$

- pedestrians tend to minimize their estimated travel time to the exit
- pedestrians temper their estimated travel time avoiding high densities
- CRITICS: instantaneous global information on entire domain

Models Conservation laws

Eikonal equation

Macroscopic models

Tests Conclusion

Hughes' model

Evolution of the velocity field:

T = 0.2

Models Conservation laws

aws Eikonal

Eikonal equation

Macroscopic models

Tests Conclusion

Hughes' model

Evolution of the velocity field:

T=0.5

Models Conservation laws

aws Eikonal

Eikonal equation

Macroscopic models

Tests Conclusion

Hughes' model

Evolution of the velocity field:

T=0.8

Models Conservation laws

Eikonal equation

Macroscopic models

Conclusion Tests

Hughes' model

Evolution of the velocity field:

T = 1.1

Conservation laws

Conclusion

Tests

Dynamic model with memory effect

Mass conservation

Models

$$\partial_t \rho + \operatorname{div}_{\mathbf{x}} \left(\rho \vec{V}(\rho) \right) = 0 \quad \text{in } \mathbb{R}^+ \times \Omega$$

where

$$\vec{V}(\rho) = v(\rho)\vec{N}$$
 and $v(\rho) = v_{\max}\left(1 - \frac{\rho}{\rho_{\max}}\right)$

Direction of the motion:
$$\vec{N} = -\frac{\nabla_{\mathbf{x}}(\phi + \omega D)}{|\nabla_{\mathbf{x}}(\phi + \omega D)|}$$
 where

$$\begin{aligned} |\nabla_{\mathbf{x}}\phi| &= \frac{1}{v_{\max}} \quad \text{in } \Omega, \quad \phi(\mathbf{x}) = 0 \text{ for } \mathbf{x} \in \partial\Omega_{exit}, \\ D &= D(\rho) = \frac{1}{v(\rho)} + \beta\rho^2 \quad \text{discomfort} \end{aligned}$$

- pedestrians seek to minimize their estimated travel time based on their knowledge of the walking domain
- pedestrians temper their behavior locally to avoid high densities

(Xia-Wong-Shu, 2009)

s Tests

Conclusion

Second order model

Euler equations with relaxation

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho \vec{V}) &= 0 \\ \partial_t \vec{V} + (\vec{V} \cdot \nabla) \vec{V} + c^2(\rho) \frac{\nabla \rho}{\rho} &= \frac{v_e(\rho) \vec{N} - \vec{V}}{\tau} \end{split}$$

(Jiang-Zhang-Wong-Liu, 2010)

Second order model

Euler equations with relaxation

(Jiang-Zhang-Wong-Liu, 2010)

Second order model

Euler equations with relaxation

 $\partial_t \rho + \nabla \cdot (\rho \vec{V}) = 0$ $\partial_t \vec{V} + (\vec{V} \cdot \nabla) \vec{V} + c^2(\rho) \frac{\nabla \rho}{\nabla \rho} = \frac{v_e(\rho) \vec{N} - \vec{V}}{2}$ relaxationanticipation termfactor

where

$$v_e(\rho) = v_{\max} \exp\left(-\gamma \left(\frac{\rho}{\rho_{\max}}\right)^2\right), \qquad c(\rho) = c_0 \left(\frac{\rho}{\rho_{\max}}\right)^{\beta}$$

and boundary conditions: $\nabla_{\mathbf{x}} \rho \cdot \vec{n} = 0$ and $\vec{V} \cdot \vec{n} = 0$

(Jiang-Zhang-Wong-Liu, 2010)

Outline of the talk

- 3 Conservation laws
- ④ Eikonal equation
- **Examples of macroscopic models**
- 6 Numerical tests
- Conclusion and perspectives

Conclusion Tests

The fastest route ...

... needs not to be the shortest!

Tests Conclusion

The fastest route ...

... depends on the model!

Models

$$|\nabla_{\mathbf{x}}\phi| = 1$$

 $\nabla_{\mathbf{x}}(\phi+\omega D)$

 $|\nabla_{\mathbf{x}}\phi| = 1/v(\rho) \label{eq:phi}$ (Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)

Tests Conclusion

The fastest route ...

... depends on the model!

Models

 $\nabla_{\mathbf{x}}(\phi + \omega D)$

 $|\nabla_{\mathbf{x}}\phi| = 1/v(\rho) \label{eq:phi}$ (Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)

Tests Conclusion

The fastest route ...

... depends on the model!

Models

$$|\nabla_{\mathbf{x}}\phi| = 1$$

 $\nabla_{\mathbf{x}}(\phi+\omega D)$

 $|\nabla_{\mathbf{x}}\phi| = 1/v(\rho) \label{eq:phi}$ (Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)

Tests Conclusion

The fastest route ...

... depends on the model!

Models

$$|\nabla_{\mathbf{x}}\phi| = 1$$

 $\nabla_{\mathbf{x}}(\phi + \omega D)$

 $|\nabla_{\mathbf{x}}\phi| = 1/v(\rho)$

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Braess' paradox?

A column in front of the exit can reduce inter-pedestrians pressure and evacuation time?

Evacuation time:

(Twarogowska-Aissiouene-Duvigneau-Goatin, 2012)

 $\partial_t \rho + \partial_x (\rho v(\rho)) = 0$

 $\partial_t \rho + \partial_x (\rho v(\rho)) = 0$

Introduce panic states: $[0, R] \rightarrow [0, R^*]$

 $\partial_t \rho + \partial_x (\rho v(\rho)) = 0$

Introduce panic states: $[0, R] \rightarrow [0, R^*]$

Extend speed law

(Colombo-Rosini, 2005)

 $\partial_t \rho + \partial_x (\rho v(\rho)) = 0$

Introduce panic states: $[0, R] \rightarrow [0, R^*]$

Extend speed law

(Colombo-Rosini, 2005)

$$\partial_t \rho + \partial_x (\rho v(\rho)) = 0$$

Introduce panic states: $[0, R] \rightarrow [0, R^*]$

Extend speed law

(Colombo-Rosini, 2005)

 $\partial_t \rho + \partial_x (\rho v(\rho)) = 0$

Introduce panic states: $[0, R] \rightarrow [0, R^*]$

Extend speed law

Change the evolution \rightarrow non-classical shocks (Colombo-Rosini, 2005)

Panic: a 1D toy model

Experimental data:

(Helbing-Johansson-Al Abideen, Physical Review E, 2007)

Panic: a 1D toy model

Colombo-Goatin-Rosini '09: Braess paradox

Conservation laws

Models

ws Eikonal

Eikonal equation

Macroscopic models

Tests Conclusion

Evacuation without obstacle: panic appears

Models Conservation laws

n laws Eiko

Eikonal equation

Macroscopic models

Tests Conclusion

Evacuation with obstacle: no panic

Tests

Outline of the talk

- ④ Eikonal equation
- Examples of macroscopic models
- 6 Numerical tests
- Conclusion and perspectives

Macroscopic models of pedestrians flows

PDEs describing the evolution of macroscopic quantities (e.g. density):

 $\partial_t u(t, \mathbf{x}) + \operatorname{div}_{\mathbf{x}} f(u(t, \mathbf{x})) = 0 \qquad t > 0, \ \mathbf{x} \in {\rm I\!R}^D, \ u \in {\rm I\!R}^n$

- based on the *continuum hypothesis*
- give global description of spatio-temporal evolution
- good agreement with empirical data
- suitable for posing control and optimization problems

 $\ensuremath{\mathbf{BUT}}$: no general analytical theory for

- multi-D hyperbolic systems (n > 1)
- control of conservation laws
- able to recover complexity features of crowd dynamics?

Multi-scale approach

Micro-to-macro scaling:

- $\bullet\,$ interactions among individuals at microscopic scale
- \bullet emergence of $\mathit{self-organized}$ flow patterns at macroscopic scale

Outer-to-inner scaling:

- $\bullet\,$ local macroscopic distribution of the crowd can modify interaction rules
- non-linearly additive *microscopic* pedestrian interactions

Models Conservation laws

Conclusion

Tests

Multi-scale time-evolving probability measures

Probability distribution of pedestrians

$$\mu_t = \theta m_t + (1 - \theta) M_t \quad \text{where} \begin{cases} m_t = \sum_{j=1}^N \delta_{P_j(t)} & \text{microscopic mass} \\ dM_t(\mathbf{x}) = \rho(t, \mathbf{x}) d\mathbf{x} & \text{macroscopic mass} \end{cases}$$

Governing equation: probability conservation deduced from individual-based modeling

$$\begin{aligned} \partial_t \mu_t + \nabla \cdot (\mu_t \vec{V}_t) &= 0 \\ \vec{V}_t(\mathbf{x}) &= \vec{V}_d(\mathbf{x}) + N \int_{\mathcal{B}_R(\mathbf{x})} K(\mathbf{x}, \mathbf{y}) d\mu_t(\mathbf{y}) \end{aligned}$$

Models Conservation laws

Conclusion

Tests

Multi-scale time-evolving probability measures

Probability distribution of pedestrians

$$\mu_t = \theta m_t + (1 - \theta) M_t \quad \text{where} \begin{cases} m_t = \sum_{j=1}^N \delta_{P_j(t)} & \text{microscopic mass} \\ dM_t(\mathbf{x}) = \rho(t, \mathbf{x}) d\mathbf{x} & \text{macroscopic mass} \end{cases}$$

Governing equation: probability conservation deduced from individual-based modeling

$$\begin{split} \partial_t \mu_t + \nabla \cdot (\mu_t \vec{V}_t) &= 0 \\ \vec{V}_t(\mathbf{x}) &= \vec{V}_d(\mathbf{x}) + N \underbrace{\int_{\mathcal{B}_R(\mathbf{x})} K(\mathbf{x}, \mathbf{y}) d\mu_t(\mathbf{y})}_{interaction}_{kernel} \end{split}$$

Tests

Dynamics at bottlenecks

Two groups with opposite directions passing through a door:

- $\theta = 0$: only macro
- $\theta = 1$: only micro
- $\theta = 0.3$: micro-macro

Tests

Dynamics at intersections

Two groups with perpendicular directions crossing each other:

- $\theta = 0$: only macro
- $\theta = 1$: only micro
- micro-macro

Models should:

- reproduce (qualitatively) emerging phenomena observed in real situations
- account for individual choices that may affect the whole system
- display few parameters to be identified by experiments
- be validated on empirical data

Models should:

- reproduce (qualitatively) emerging phenomena observed in real situations
- account for individual choices that may affect the whole system
- display few parameters to be identified by experiments
- be validated on empirical data

Much still have to be done!

Introduction	Models	Conservation laws	Eikonal equation	Macroscopic models	Tests	Conclusion

Thank you for your attention!