HAVSS SUMMER SCHOOL

Topic Models and Temporal Activity Mining

Rémi Emonet - 2012-10-05

ORIGINS OF TOPIC MODELS

- > Corpus of text documents
 - set of documents
 - documents made of words
- ➤ Goal
 - understand what documents are about
 - find "topics" shared by documents
 - do soft clustering of documents
 - unsupervised co-occurrence finding

TOPIC MODELS: BAG OF WORDS

- ➤ "Bag of Words" representation
 - document = bag

CONTENT OF THE LECTURE

- ➤ Introduction to topic models
 - basics
 - examples
 - extensions
- > Example with audio data
- > Temporal topic modeling

DIGRESSION ON COLLECTIONS

- > Sequence
 - [the, dog, chased, the, cat]
 - ordered, possible duplicates
- ➤ Set
 - {cat, chased, dog, the}
 - unordered, uniqueness
- ➤ Bag
 - (cat, chase, dog, the, the)
 - unordered, possible duplicates
 - {(cat,1), (chase,1), (dog,1), (the,2)}

TOPIC MODELS: MATRIX VIEW

- ➤ Probabilistic Latent Semantic Analysis (PLSA)
 - matrix decomposition
 - non-negative
 - ullet probabilistic interpretation: $p(w|d) = \sum_{z} p(w|z)p(z|d)$

Rémi Emonet - 7 / 141

Rémi Emonet - 12 / 141

TOPIC MODELS: SUB-SIMPLEX VIEW

Rémi Emonet - 16 / 1

EXAMPLE ON TEXT DOCUMENTS

- ➤ PLSA
 - captures co-occurrence
 - handles polysemy
 - handles synonymy
- ➤ "Names" of topics are artificial

Rémi Emonet - 18 / 141

PLSA: INFERENCE

- ➤ Reminder
 - observations: x_{di}
 - lacktriangle latent variables: z_{di}
 - lacksquare parameters: ϕ_k and θ_d
- > An EM Algorithm can be derived
 - E: $\forall d, i$, compute the distribution (table): $p(z_{di}|x, \varphi^{t-1}, \theta^{t-1})$ $\forall d, i, p(z_{di}|...) \propto \theta_d^{t-1}(z_{di}) \varphi_{z_{di}}^{t-1}(x_{di})$
 - M: find the new best parameters: $(\theta^t, \varphi^t) = \operatorname{argmax}_{\varphi, \theta} (q(\theta, \varphi | \theta^{t-1}, \varphi^{t-1}, z))$

ANOTHER VIEW

Rémi Emonet - 17 / 14

PLSA: GRAPHICAL MODEL

- ➤ Probabilistic Latent Semantic Analysis
 - observations: x_{di}, a given word in a document

- lacksquare latent variables: z_{di} , the topic index of each observation
- parameters: $\varphi_k = p(w|z=k)$ and $\theta_d = p(z|doc=d)$
- \triangleright Generative process, $\forall d, i$:
 - draw z_{di} from Categorical(θ_d)
 - draw x_{di} from Categorical $(\varphi_{z_{di}})$
- ightharpoonup Likelihood: $\prod_{d} \prod_{i} p(w = x_{di}|z = z_{di}) p(z = z_{di}|d)$

Rémi Emonet - 19 / 14

Rémi Emonet - 21 / 141

APPLICATION TO VARIOUS DATATYPES

- ➤ PLSA on text
 - documents = bags of words
 - output: topic = co-occurring words
 - output: per doc. topic distribution
- ➤ On other datasets
 - need to define a vocabulary
 - need to define the documents

Rémi Emonet - 20 / 141

 φ

K (topics k)

N_d(words i)

D(documents d)

Ex. 1: Human Routines from Cell Phone Data (Farrahi, ISWC2008)

- > Raw input: location of people during the experiment
- ➤ Goal: find daily routines

Rémi Emonet - 22 / 141

RESULTS: ROUTINES FROM CELL PHONE DATA

Dámi Emanat 20/44

MINING VISUAL ACTIVITIES IN TRAFFIC SCENES

- ➤ Vocabulary: localized motion
 - define region in the image (e.g. 75 of them)
 - word =
 presence
 of a
 motion
 pixel in
 a region

Rémi Emonet - 30 / 141

VOCABULARY: ROUTINES FROM CELL PHONE DATA

- > Document: one day of one person
 - routines across persons
 - identity is lost
- ➤ Vocabulary
 - 8 timeslots: 0-7, 7-9, 9-11, 11-14, 14-17, 17-19, 19-21, 21-24
 - trigram of locations
 - word = trigram "+" one of the eight timeslots
 - e.g., HHH1, being at home for 1.5 hour before 7AM (slot 1)
 - vocabulary size: 4³×8

Rémi Emonet - 23 / 141

Ex. 2: MINING VISUAL ACTIVITIES IN TRAFFIC SCENES

MINING VISUAL ACTIVITIES IN TRAFFIC SCENES

- ➤ Vocabulary: localized motion
- ➤ Document: temporal window
 - accumulate motion over a temporal window (e.g., 5 seconds)

■ 20 second long windows ⇒ what does a document contain?

Rémi Emonet - 31 / 141

MINING VISUAL ACTIVITIES IN TRAFFIC SCENES

- ➤ Results?
 - 20 second long windows
 - what 2 topics would you expect?
- ➤ Viewing results
 - what happens with win. of 20 second, 2 topics?
 - what happens with win. of 10 second, 2 topics?
 - what happens with win. of 10 second, 3 topics?
 - what happens with win. of 5 second, 3 topics?
 - what happens with win. of 5 second, 5 topics?

Rémi Emonet - 37 / 14:

PLSA: SUMMARY

- ➤ Probabilistic Latent Semantic Analysis
 - inputs a set of documents, each being a bag of words
 - does co-occurrence analysis
 - finds topics defined as distribution over words
- > Comments
 - can be solved with EM (with pros and cons)
 - \blacksquare need to fix K, the number of topics
 - vocabulary definition? Documents definition?
 - bag
 - easy multi-modality

PLSA: SUMMARY

- ➤ Probabilistic Latent Semantic Analysis
 - inputs a set of documents, each being a bag of words
 - does co-occurrence analysis
 - finds topics defined as distribution over words

Rémi Emonet - 38 / 141

HAVSS SUMMER SCHOOL

Beyond PLSA on Audio Data

by Bertrand Ravera - 2012-10-05

Rémi Emonet - 40 / 14

Rémi Emonet - 44 / 141

EXTENSIONS: LDA

- ➤ Motivation
 - PLSA is not fully generative
 - PLSA has no prior on θ and ϕ
- ➤ Latent Dirichlet Allocation
 - adds prior
 - fully generative
 - inference scheme
 - e.g., variational inference, Gibbs sampling (MCMC)
 - use of conjugate prior, Dirichlet/Categorical

EXTENSIONS: HDP-LDA

- ➤ Motivation
 - LDA needs *K*, the number of topics
 - need to remove "stop words" (appearing too often)
- ➤ Hierarchical Dirichlet Process
 - "non-parametric" method
 - cleanly models a $K = \infty$
 - lacksquare finds the "best" K
 - better handles high-frequency words

Rémi Emonet - 42 / 141

φ

K (topics k)

D(documents d)

SUMMARY

- ➤ Topic models
 - unsupervised mining of "themes"
 - document = bag of words
- ➤ Evolutions
 - non-textual documents
 - mixed feature types
 - various models
- > vocabulary definition? Documents definition?

HAVSS SUMMER SCHOOL

Temporal Activity Mining

Rémi Emonet - 2012-10-05

Rémi Emonet – 45 / 14:

(Rere)Summary

- ➤ Topic models
 - unsupervised mining of "themes"
 - document = bag of words
- > Evolutions
 - non-textual documents
 - mixed feature types
 - various models
- > vocabulary definition? Documents definition?

EXTENSIONS FOR TEMPORAL MODELING

- ➤ At vocabulary level
 - similar raw observations at different time ⇒ different word
- > On top of the topic model
 - HMM over topic distributions (Hospedales, ICCV2009)
 - drifting topics
- ➤ Within the model
 - topic ⇒ motifs: "PLSM" (Varadarajan, BMVC2010, Emonet, CVPR2011)
 - with HMM and local rules: "MERM" (Varadarajan, CVPR2012)

Rémi Emonet - 47 / 141

TEMPORAL DOCUMENTS

Rémi Emonet - 53 / 141

TEMPORAL DOCUMENTS

Rémi Emonet - 67 / 141

PLSA FOR TEMPORAL DATA

Rémi Emonet - 71 / 14

PLSA FOR TEMPORAL DATA

Rémi Emonet - 88 / 14

(then use PLSA, etc.)

PROBABILISTIC LATENT SEQUENTIAL MOTIFS

PLSA FOR TEMPORAL DATA

Rémi Emonet - 83 / 14

PLSA FOR TEMPORAL DATA

- sequence is preserved
- ok if document can be synchronized (e.g. traffic lights)

Documents from a sliding window, words include time (then use PLSA, etc.)

Rémi Emonet - 97 / 14

PROBABILISTIC LATENT SEQUENTIAL MOTIFS

Rémi Emonet - 103/141 Rémi Emonet - 105/141

PROBABILISTIC LATENT SEQUENTIAL MOTIFS

Temporal Document: n(w, ta, d) ta Learning W z=1 Motifs Occurences: p(z,ts|d) Temporal Motifs: p(w,tr|z)

Rémi Emonet – 108 / 14:

PROBABILISTIC LATENT SEQUENTIAL MOTIFS

Rémi Emonet - 110 / 141

PLSM GRAPHICAL MODEL

Rémi Emonet - 112 / 141

PLSM RESULTS: REPRESENTATION

Rémi Emonet - 115 / 141

PLSM RESULTS: REPRESENTATION

PLSM RESULTS: REPRESENTATION

Redultive time

Rémi Emonet - 121/141 Rémi Emonet - 131/141

PLSM RESULTS

- ➤ Traffic scenes
 - <u>"rue"</u>
 - <u>"Kuettel"</u>
 - <u>"MIT"</u>
- ➤ Metro station
 - Single camera
 - Multiple cameras
 - <u>More cameras</u>

Rémi Emonet - 132 / 14

EXAMPLE MOTIFS: MEZZANINE

Rémi Emonet - 134 / 14

EXAMPLE MOTIFS: TICKET HALL

EXAMPLE MOTIFS: PLATFORM

Rémi Emonet - 133 / 14

EXAMPLE MOTIFS: TICKET HALL

Rémi Emonet - 136 / 14

PLSM EXTENSIONS / LIMITATIONS

- ➤ Absence of sparsity
- ➤ Fixed number of motifs
- > Fixed motif duration
- ightharpoonup No scene level cycle modeling

Rémi Emonet - 137/141 Rémi Emonet - 138/141

HMM BASED TEMPORAL MODELING

More

- ➤ About EM for PLSA?
- ➤ About Dirichlet Process?
- ➤ About Gibbs Sampling?
- ➤ About HMM/HSMM (semi-markov)?

Rémi Emonet - 139 / 14

QUESTIONS?

Rémi Emonet - 140 / 141