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The MLP

The Multi Layer Perceptron

MLP

It contains 1 input layer, 1 or several hidden layer and 1 output
layer:

Hidden Layer
Input Layer OQOutput Layer

It can approximate any continuous functions !
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The MLP

The Multi Layer Perceptron

A MLP is a function: y = MLP(x; W)

W is the set of parameters {Wl-j-, Wi Vi, j, |

v

For each unit / on layer / of the MLP

e integration: a,’- = ZJH’ yjl’lwé- + WI-IO,

o transfer: y! = f(al) where f(x) = tanh(x) or or x

1
1+exp(—x)

Input/Output limit cases

e on the input layer (/ = 0) y! = x; Vi = 1..n,

e on the output layer (/ = L) ; = y-Vi = 1..m.

N
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The MLP

The Multi Layer Perceptron

3 forms of data for 3 types for problems

The data Dp = {z1, 23, ..., zp} € Z is independently and identically
distributed and is drawn from an unknown distribution p(Z)

e classification: Z = (X,Y) € R" x {-1,1}
e regression: Z=(X,Y)€eR" xR"
e density estimation: Z € R"
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Cost function and Criterion

The goal is to minimize a cost function C over the set of data Dp:

C(Dp, W) = ZL p),9(p))

y(p) is the output target vector for example p,
y is the output of the MLP (y = MLP(x; W)),

x(p) is the input vector for example p (ievs omit ).

L is a criterion to optimize such as the mean squared error

(MSE):
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Gradient Descent

Gradient Descent

the gradient descent is an iterative procedure to modify the
weights:

aC(D, Wt)

Wt+1 — Wt o )

T owt

where 7 is the learning rate (neither too small or too big)

c(WHh
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Gradient Descent

Gradient Descent

the goal is to “move” w! in the opposite direction of the gradient
to reach the global minimum.

c(wi
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Gradient Descent

Gradient computing and updating

Computing the gradient and updating the weights is performed
from the output neurons to the input neurons, in the inverse order
of the propagation (Gradient Back-Propagation).

Input Layer Output Layer

Hidden Layer

Back-propagation of the error
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Gradient Descent

the chain rule

let us denote a = f(b) and b = g(c), then

Da _0a 0b_
dc  Ob dc

f'(b) - &'(c) (1)

—D b= g(e)

—D a=f®)
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Gradient Descent

the sum rule

let us denote a = f(b, c), b = g(d) and ¢ = h(d), then
0a _ 03 b 0a oc 2
od ~ 0b O0d Oc Od
_ 0f(b,c) of(b,c) |,
= ) @)+ L2 ) @)
b= g(d)
d a = f(b, c)
e = h(d)
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Gradient Descent

cost function derivative < criterion derivative:

aC(Dp, W) aC,(W)

oW < Tow
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Gradient Descent

computes the derivative of the criterion with respect to weights w.

ij
G (W) _ 9G(W) 09
(9W,-§- N 8aj’- 8Wi§
G
831’. !
_0G(W)
= ] [ i
8yj Gaj
= o f(a) i )
now let's compute ¢J’-
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Gradient Descent

for | = L (output layer):

ol _ G(W)
J 8y.L
J
_ Y-y )
8ij
= (0 -) (5)

Thus, we compute for each output neuron j, the difference
between the output ij and the target y; (for example p).
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Gradient Descent

for | # L (hidden layers):

H,
of — OCP(W):iﬁcp(W).aaf‘l

] +1 I
8yj = Oa, 8yj
H
_ f G (W) 82;11 Wi 'y}
- I+1 ]
o 99 9y;

H, H,
_ f (W) Y i G (W) ) 8y,ﬁ+1 S
T 2t Mk T

I+1 51 Wik
k=1 - day
Hipq
I+1 I+1 I+1
= DO @) wy (6)
k=1

Thus, ®! can be computed using layer / + 1.
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Gradient Descent

For each weight, the update is done using the following rule:

/ ! aCP
wi: =W, =N — 7)
ij,t+1 e I (
awij,t

where 7 is the learning rate, and aamﬁ" is defined by:

it

ac, [ I=L = @)yt ~w)
8W[Ii,t - /#L . f’(a) |:ZH/+1 ¢l+1 f’( l+1) Jlk+1
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Gradient Descent: Example

Initial MLP:

Note that: yL = a} and yj’ = tanh(ajl-)
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Gradient Descent: Example

Forward:

Note that: MSE = %ZJ(YJ — yJ.L)2
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Gradient Descent: Example

Backward:

Note that: ®F = (y — y;), and that: & = &f - f/(ag) - wjj.
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Gradient Descent: Example

Note that: % = dwj; = &} - f'(a}) -y/7!, and that: Yg; = ag;:

i

tanh’(a) = 1 — tanh(a)®> = 1 — y2.
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Gradient Descent: Example

L _ 0.86 0.3 —0.143

—0.6 ——0.686

L —_
dwg, = —0.23

0.6 —0.623

Note that: W/ 1 = W —n- dW with n = 0.1 for instance
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Gradient Descent: Example

0.623
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Gradient Descent: Summary

For each iteration t

e Initialize the gradients ac," to 0

8WU .
e For each example p (x(p),y(p)):
Compute j(p) = MLP(x(p); W)
H Compute f’(aj’r)
Compute ®} using Equation (5)

B Compute gradient ;WCL” using Equation (4)
it

H Accumulate the above gradient

@ For each layer / from L — 1 to 1:
Compute f’(aj’-)

Compute d> using Equation (6)

Compute gradient /’ using Equation (4)
j,t

@ Accumulate the above gradient

e Update weights WI-J- using Equation (7)
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More about Classification

2-class problem

e use 1 output,

e encode the target as {+1, —1} or {0,1} depending on the
transfer function (linear, tanh, sigmoid),

multi-class problem

e use 1 output per class

e encode the target as (0, ..., 1,...,0)
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MLP Tricks

Stochastic gradient

e use stochastic gradient instead of global (batch) gradient,
e adjust the weights at each example,

Initialization

to avoid the saturation of the transfer function (gradient tends
toward 0)

Learning rate

| A

e if too big the optimization diverges,
e if too small the optimization is very slow or is stuck into a
local minima

more in the book: Orr, G. B. and Muler, K. “Neural Networks:
Tricks of the Trade”, Springer, 1998

Prof S. Marcel — University of Cagliari 2010 An Advanced Introduction to the MLP



MLP Tricks: initialization

input data
normalized with zero mean and unit variance,

targets

o for regression: normalized with zero mean and unit variance,
e for classification, if output transfer function is:

e tanh(.) targets should be 0.6 and —0.6,
e sigmoid(.) targets should be 0.8 and 0.2,
e linear(.) targets should be 0.6 and —0.6.

uniformly distributed in [

1 1 .
T S inj] where fan in; is the
number of units preceding unit j.
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MLP Tricks: inertia momentum

to avoid to be stucked in a local minima

Cc(WHh

I I I I
Wijep1 = Wije — - dwi + 8- (Wi p — Wi 1)

where (3 is the inertia momentum rate
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Conclusion

Future Lectures

Artificial Neural Networks

e Hopfield auto-associative memory

e Kohonen auto-organizing maps

Distribution Modelling

e Gaussian Mixture Models
e Hidden Markov Models

e Bayesian Networks

Support Vector Machines, Boosting, ...
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