More ...

Multi Layer Perceptron:

An Advanced Introduction

Prof Sébastien Marcel

Senior researcher www.idiap.ch/~marcel

> Idiap Research Institute Martigny, Switzerland www.idiap.ch

January 25, 2010

Outline

- 1 The Multi Layer Perceptron
- 2 Training
- More about classification and MLP tricks

Training

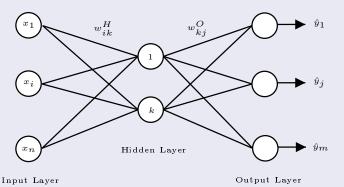
4 Conclusion

The Multi Layer Perceptron

Training

MLP

It contains 1 input layer, 1 or several hidden layer and 1 output layer:



It can approximate any continuous functions!

The Multi Layer Perceptron

A MLP is a function: $\hat{y} = MLP(x; W)$

W is the set of parameters $\{w_{ij}^{I}, w_{i0}^{I}\} \forall i, j, I$

For each unit i on layer I of the MLP

- integration: $a_{i}^{l} = \sum_{j}^{H_{l}} y_{j}^{l-1} w_{ij}^{l} + w_{i0}^{l}$,
- transfer: $y_i^l = f(a_i^l)$ where f(x) = tanh(x) or $\frac{1}{1 + exp(-x)}$ or x

Input/Output limit cases

- on the input layer (I=0) $y_i^I = x_i \, \forall i = 1..n$,
- on the output layer (I = L) $\hat{y}_i = y_i^L \forall i = 1..m$.

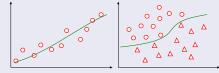
The Multi Layer Perceptron

3 forms of data for 3 types for problems

Training

The data $D_P = \{z_1, z_2, ..., z_P\} \in \mathcal{Z}$ is independently and identically distributed and is drawn from an unknown distribution p(Z)

- classification: $Z = (X, Y) \in \mathbb{R}^n \times \{-1, 1\}$
- regression: $Z = (X, Y) \in \mathbb{R}^n \times \mathbb{R}^m$
- density estimation: $Z \in \mathbb{R}^n$



Outline

- 1 The Multi Layer Perceptron
- 2 Training
 - Cost function and Criterion
 - Gradient Descent
 - Gradient Descent: Example of Calculus
- More about classification and MLP tricks
- 4 Conclusion

Outline

- 1 The Multi Layer Perceptron
- 2 Training
 - Cost function and Criterion
 - Gradient Descent
 - Gradient Descent: Example of Calculus
- More about classification and MLP tricks
- 4 Conclusion

Cost function and Criterion

The goal is to minimize a cost function C over the set of data D_P :

$$C(D_P, W) = \sum_{p=1}^{P} L(y(p), \hat{y}(p))$$

- y(p) is the output target vector for example p,
- \hat{y} is the output of the MLP $(\hat{y} = MLP(x; W))$,
- x(p) is the input vector for example p (let's omit p).
- L is a criterion to optimize such as the mean squared error (MSE):

$$MSE(y, \hat{y}) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

- 2 Training
 - Cost function and Criterion
 - Gradient Descent
 - Gradient Descent: Example of Calculus
- More about classification and MLP tricks

Training

Gradient Descent

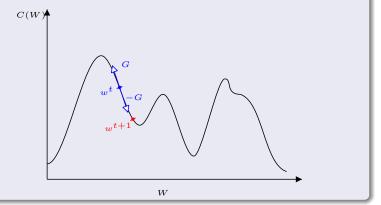
the gradient descent is an iterative procedure to modify the weights:

$$W^{t+1} = W^t - \eta \frac{\partial C(D, W^t)}{\partial W^t}$$

where η is the learning rate (neither too small or too big)

Gradient Descent

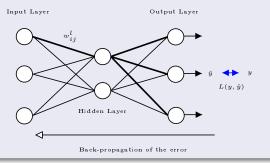
the goal is to "move" w^t in the opposite direction of the gradient to reach the global minimum.



Training

Gradient computing and updating

Computing the gradient and updating the weights is performed from the output neurons to the input neurons, in the inverse order of the propagation (Gradient Back-Propagation).



the chain rule

let us denote a = f(b) and b = g(c), then

$$\frac{\partial a}{\partial c} = \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial c} = f'(b) \cdot g'(c) \tag{1}$$

the sum rule

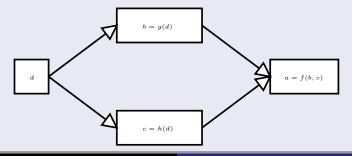
let us denote a = f(b, c), b = g(d) and c = h(d), then

Training

$$\frac{\partial a}{\partial d} = \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial d} + \frac{\partial a}{\partial c} \cdot \frac{\partial c}{\partial d}$$

$$\frac{\partial f(b, c)}{\partial d} = \frac{\partial f(b, c)}{\partial d}$$
(2)

$$= \frac{\partial f(b,c)}{\partial b} \cdot g'(d) + \frac{\partial f(b,c)}{\partial c} \cdot h'(d)$$
 (3)



cost function derivative ⇔ criterion derivative:

$$\frac{\partial C(D_P, W)}{\partial W} \Leftrightarrow \frac{\partial C_p(W)}{\partial W}$$

remember that:

$$C(D_P, W) = \sum_{p=1}^{P} L(y(p), \hat{y}(p))$$

$$C_p(W) = \frac{1}{2} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{m} (y_i - y_i^L)^2$$

computes the derivative of the criterion with respect to weights w_{ii}^{I}

$$\frac{\partial C_{p}(W)}{\partial w_{ij}^{l}} = \frac{\partial C_{p}(W)}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial w_{ij}^{l}}$$

$$= \frac{\partial C_{p}(W)}{\partial a_{j}^{l}} \cdot y_{i}^{l-1}$$

$$= \frac{\partial C_{p}(W)}{\partial y_{j}^{l}} \cdot \frac{\partial y_{j}^{l}}{\partial a_{j}^{l}} \cdot y_{i}^{l-1}$$

$$= \Phi_{j}^{l} \cdot f'(a_{j}^{l}) \cdot y_{i}^{l-1} \qquad (4)$$

now let's compute Φ_i^I

Training

for I = L (output layer):

Training

$$\Phi_{j}^{L} = \frac{\partial C_{p}(W)}{\partial y_{j}^{L}}$$

$$= \frac{\partial \frac{1}{2} \sum_{i=1}^{m} (y_{i} - y_{i}^{L})^{2}}{\partial y_{j}^{L}}$$

$$= (y_{j}^{L} - y_{j}) \qquad (5)$$

Thus, we compute for each output neuron i, the difference between the output y_i^L and the target y_j (for example p).

for $l \neq L$ (hidden layers):

$$\Phi_{j}^{l} = \frac{\partial C_{p}(W)}{\partial y_{j}^{l}} = \sum_{k=1}^{H_{l+1}} \frac{\partial C_{p}(W)}{\partial a_{k}^{l+1}} \cdot \frac{\partial a_{k}^{l+1}}{\partial y_{j}^{l}}$$

$$= \sum_{k=1}^{H_{l+1}} \frac{\partial C_{p}(W)}{\partial a_{k}^{l+1}} \cdot \frac{\partial \sum_{i=1}^{H_{l}} w_{ik}^{l+1} y_{i}^{l}}{\partial y_{j}^{l}}$$

$$= \sum_{k=1}^{H_{l+1}} \frac{\partial C_{p}(W)}{\partial a_{k}^{l+1}} \cdot w_{jk}^{l+1} = \sum_{k=1}^{H_{l+1}} \frac{\partial C_{p}(W)}{\partial y_{k}^{l+1}} \cdot \frac{\partial y_{k}^{l+1}}{\partial a_{k}^{l+1}} \cdot w_{jk}^{l+1}$$

$$= \sum_{k=1}^{H_{l+1}} \Phi_{k}^{l+1} \cdot f'(a_{k}^{l+1}) \cdot w_{jk}^{l+1} \tag{6}$$

Thus, Φ_i^I can be computed using layer I+1.

Training

0**0000000000**00000000

For each weight, the update is done using the following rule:

$$w_{ij,t+1}^{l} = w_{ij,t}^{l} - \eta \cdot \frac{\partial C_p}{\partial w_{ij,t}^{l}}$$
 (7)

where η is the learning rate, and $\frac{\partial C_p}{\partial w_{ij,t}^l}$ is defined by:

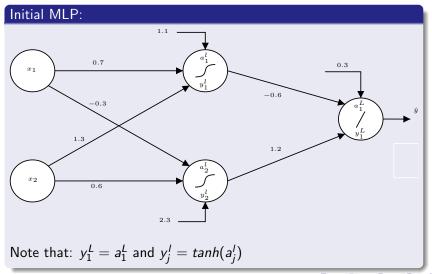
$$\frac{\partial C_p}{\partial w_{ij,t}^l} = \begin{cases} I = L : f'(a_j^l) \cdot y_i^{l-1} \cdot (y_j^l - y_j) \\ I \neq L : f'(a_j^l) \cdot y_i^{l-1} \cdot \left[\sum_{k=1}^{H_{l+1}} \Phi_k^{l+1} \cdot f'(a_k^{l+1}) \cdot w_{jk}^{l+1} \right] \end{cases}$$

Conclusion

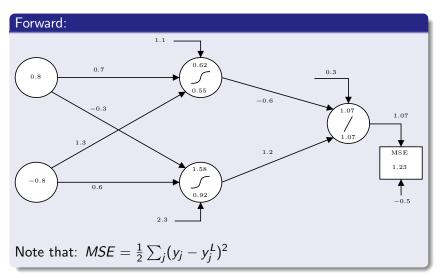
Outline

- 2 Training
 - Cost function and Criterion
 - Gradient Descent
 - Gradient Descent: Example of Calculus
- More about classification and MLP tricks

Training

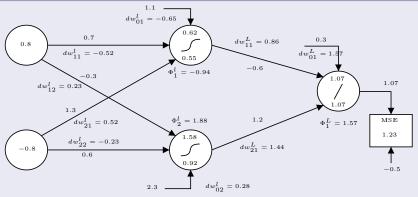


The MLP



Training

Backward: 0.62 0.7 0.3 -0.6 $\Phi_1^l = -0.94$ 1.07 $\Phi_{2}^{l} = 1.88$ $\Phi_1^L = 1.57$ 1.23 1.58 0.6 0.922.3 Note that: $\Phi_j^L = (y_j^L - y_j)$, and that: $\Phi_i^I = \Phi_1^L \cdot f'(a_1^L) \cdot w_{i1}^L$.

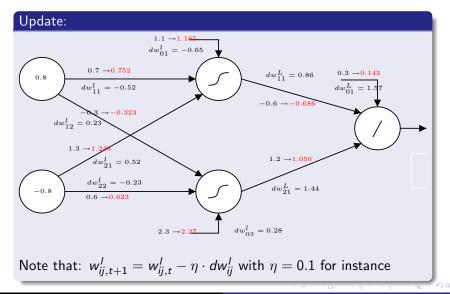


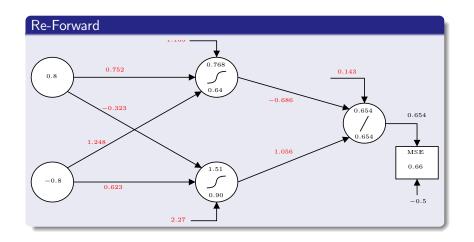
Note that: $\frac{\partial C}{\partial w_{ij}^l} = dw_{ij}^l = \Phi_j^l \cdot f'(a_j^l) \cdot y_i^{l-1}$, and that: $y_{0j}^l = a_{0j}^l$, $tanh'(a) = 1 - tanh(a)^2 = 1 - y^2$.

10 Q C

Training

00000000000000000000





Gradient Descent: Summary

For each iteration t

• Initialize the gradients $\frac{\partial C_p}{\partial w_{::}^l}$ to 0

Training

- For each example p(x(p), y(p)):
 - 1 Compute $\hat{y}(p) = MLP(x(p); W)$
 - 2 Compute $f'(a_i^L)$
 - **3** Compute Φ_i^L using Equation (5)
 - 4 Compute gradient $\frac{\partial C_p}{\partial w_{L}^L}$ using Equation (4)
 - 5 Accumulate the above gradient
 - For each layer I from L-1 to 1:
 - Compute $f'(a_i^l)$
 - Compute Φ_i^I using Equation (6)
 - Compute gradient $\frac{\partial C_p}{\partial w!}$ using Equation (4)
 - Accumulate the above gradient
- Update weights w_{ii}^I using Equation (7)

Outline

- 1 The Multi Layer Perceptron
- 2 Training
- More about classification and MLP tricks
- 4 Conclusion

More about Classification

2-class problem

- use 1 output,
- encode the target as $\{+1, -1\}$ or $\{0, 1\}$ depending on the transfer function (linear, tanh, sigmoid),

multi-class problem

- use 1 output per class
- encode the target as (0, ..., 1, ..., 0)

Training

MLP Tricks

Stochastic gradient

- use stochastic gradient instead of global (batch) gradient,
- adjust the weights at each example,

Initialization

to avoid the saturation of the transfer function (gradient tends toward 0)

Learning rate

- if too big the optimization diverges,
- if too small the optimization is very slow or is stuck into a local minima

more in the book: Orr, G. B. and Muler, K. "Neural Networks: Tricks of the Trade", Springer, 1998

input data

normalized with zero mean and unit variance,

targets

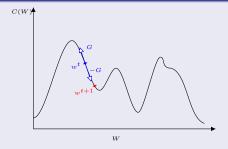
- for regression: normalized with zero mean and unit variance,
- for classification, if output transfer function is:
 - tanh(.) targets should be 0.6 and -0.6,
 - sigmoid(.) targets should be 0.8 and 0.2,
 - linear(.) targets should be 0.6 and -0.6.

weights wij

uniformly distributed in $\left[\frac{-1}{\sqrt{\text{fan in}_j}}, \frac{1}{\sqrt{\text{fan in}_j}}\right]$ where fan in_j is the number of units preceding unit j.

MLP Tricks: inertia momentum

to avoid to be stucked in a local minima



$$w'_{ij,t+1} = w'_{ij,t} - \eta \cdot dw'_{ij} + \beta \cdot (w'_{ij,t} - w'_{ij,t-1})$$

where β is the inertia momentum rate

Outline

- 1 The Multi Layer Perceptron
- 2 Training
- More about classification and MLP tricks
- 4 Conclusion

Future Lectures

Artificial Neural Networks

- Hopfield auto-associative memory
- Kohonen auto-organizing maps

Distribution Modelling

- Gaussian Mixture Models
- Hidden Markov Models
- Bayesian Networks

More

Support Vector Machines, Boosting, ...

References

Material

- ullet This lecture is at www.idiap.ch/ \sim marcel
- Machine learning Library: http://www.torch.ch

Books

- Bishop, C. "Neural Networks for Pattern Recognition", 1995
- Vapnik, V. "The Nature of Statistical Learning Theory", 1995
- Orr, G. B. and Muler, K. "Neural Networks: Tricks of the Trade", Springer, 1998

Extended Lectures on Machine Learning Algorithms

- Bengio, Y. www.iro.umontreal.ca/~pift6266/A03
- Bengio, S. www.idiap.ch/~bengio/lectures/index.html
- Jordan, M. www.cs.berkeley.edu/~jordan/courses.html