Face Processing from face detection to face recognition

Prof Sébastien Marcel

Senior researcher www.idiap.ch/~marcel

> Idiap Research Institute Martigny, Switzerland www.idiap.ch

January 25, 2010

・ 同 ト ・ ヨ ト ・ ヨ ト

- Part 1 Introduction
- Part 2 Pre-requisites
- Part 3 Face Detection
- Part 4 Face Recognition

(4回) (4回) (4回)

-

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

< □ > < □ > < □ > < □ > < □ > .

-21

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Face Recognition

Applications

- In spite of the expanding research in the field of face recognition, a lot of problems are still unsolved,
- Today, several systems that achieve high recognition rates have been developed, however:
 - such systems work in controlled environments,
 - for most of them, face images must be frontal or profile,
 - background must be uniform,
 - lighting must be constant.
- Furthermore, lot of published systems are evaluated using manually located faces,
- and the ones which have been evaluated using a fully automatic system showed a big degradation in performance.

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Challenges

Challenges

- In most real life applications, the environment is not known *a-priori* and the system should be fully automatic. A Face Recognition system has to deal with:
 - Lighting Variation,
 - Head Pose changes and Non-Perfect Detection,
 - Occlusion and Aging.
- Typically these variability are classified as:
 - *extra-personal* variabilities: variations in appearance between different identities,
 - *intra-personal* variabilities: variations in appearance of the same identity, due to different expression, lighting, background, head pose, hair cut, etc.

- - 4 回 ト - 4 回 ト

Methods for Face Recognition

General FR system

- geometric normalization (see part on face detection/alignment),
- 2 photometric normalization (or illumination normalization),
- 3 feature extraction,
- 4 classification.

・ロト ・回ト ・ヨト ・ヨト

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Geometric Normalization

Goal

- 1 align eye centers,
- 2 compensate for in-plane rotation.

Prof S. Marcel – University of Cagliari 2010 Face Processing: from face detection to face recognition

Photometric Normalization

003 1 1.pgm 003 1 1.pos

003 1 1.inorm.bindata

Techniques

- **1** Histogram Equalization (HEQ),
- Multi-scale Retinex (Illuminance-reflectance model), 2
- 3 Self-Quotient Image,
- Diffusion (Gross and Brajovic), 4
- 5 Local Binary Patterns.

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Holistic vs Local

- The goal of feature extraction is to find a specific representation of the data that can highlight relevant information.
- An image is represented by:

a high dimensional vector containing pixel values (holistic representation)

a set of vectors where each vector contains gray levels of a sub-image (local representation)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Holistic vs Local

- Vectors are projected into a new space (the feature space) where the least relevant features can be removed to reduce the dimensionality according to a criterion (such as lowest amount of variance):
 - Holistic representations (representations found using the statistics of image data)
 - Local representations (researchers have argued that local filters are more robust than global representation)

・ロン ・回 と ・ ヨ と ・ ヨ と …

Holistic

- Turk and Pentland [1991]: *Principal Component Analysis* (PCA)
- Zhao and al. [1999], Li and al. [2000]: *Linear Discriminant Analysis* (LDA, also known as Fisher Discriminant Analysis)

For face recognition, LDA should outperform PCA because it inherently deals with class discrimination. However, Martinez and Kak [2001] have shown that PCA might outperform LDA when the number of samples per class is small.

・ 同 ト ・ ヨ ト ・ ヨ ト

Local

- Local PCA, Padgett and Cottrell [1997]
- 2D Gabor Wavelet, Daugman [1985], Lades [1993]: Gabor filters are known as good feature detectors and such filters remove most of the variability in images that is due to variations in lighting.
- 2D Discrete Cosine Transform: Face images are analyzed on a block by block basis. Each block is decomposed in terms of 2D Discrete Cosine Transform (DCT) basis functions. A feature vector for each block is then constructed with the DCT coefficients.
- Modification of the 2D DCT: Sanderson [2002] proposed the DCTmod2, where the first three DCT coefficients are replaced by their respective horizontal and vertical deltas in order to reduce the effects of illumination direction changes.
- Local Binary Patterns: Ahonen [2005] proposed to use LBP
 histograms computed in face regions
 Prof S. Marcel University of Cagliari 2010 Face Processing: from face detection to face recognition

Principal Component Analysis (PCA)

Eigenfaces

• $\mathbf{x}_i \in \mathbb{R}^n$ is a face image which $n = w \times h$,

•
$$\mathbf{W} = [\mathbf{e}_1 ... \mathbf{e}_m]^T$$
:

- - 4 回 ト - 4 回 ト

Discrete Cosine Transform (DCT)

Eigenfaces

- the face image is decomposed into blocks,
- the DCT is computed for each block

Local Binary Patterns (LBP)

Histogram of LBP

- the face image is decomposed into blocks,
- a LBP histogram is computed for each block.

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Classification

Definitions

- Classification consists of attributing a label to the input data and differs according to the specific task (closed or open set identification, verification)
- All system provides a score $\Lambda_I(X)$ corresponding to an opinion on the probe face pattern X to be the identity *I*.
 - verification: the label is true (client) or false (impostor)
 - · closed set identification: the label is the identity
 - open set identification: the label is the identity or unknown

- 4 回 5 - 4 三 5 - 4 三 5

Classification

Definitions

- verification: given a threshold τ , the claim is accepted when $\Lambda_I(X) \ge \tau$ and rejected when $\Lambda_I(X) < \tau$
- closed set identification: we can recognize identity *I** corresponding to the probe face pattern X as follows

$$I^* = \arg\max_{I} \Lambda_I(X) \tag{1}$$

 open set identification: the recognized identity *I** corresponding to the probe face is found as follows

$$I^{*} = \begin{cases} \text{unknown} & \text{if } \Lambda_{I}(X) < \tau \ \forall \ I \\ \text{arg max}_{I} \Lambda_{I}(X) & \text{otherwise} \end{cases}$$
(2)

Computing the score $\Lambda_I(X)$

Similarity measures

Euclidean, Mahalanobis [beveridge:2001], Normalized correlation [Kittler:2000], χ^2 [Ahonen:2004], \ldots

Feature based approaches

Elastic Graph Matching [Lades:1993] and *bunch graph* [Wiskott:1997] using Gabor filters and a labeled graph.

Statistical model based approaches

more robust than classical approaches but require a training:

- a model is trained from a set of reference images for each identity,
- and the score is then computed given a probe image and the parameters of the model corresponding to an identity.

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Statistical Model based Approaches

Discriminant vs Generative

- **Discriminant models** such as Multi-Layer Perceptrons or Support Vector Machines:
 - training dataset of *I* pairs (*X_i*, *y_i*) where *X_i* is a vector containing the pattern, while *y_i* is the class of the corresponding pattern,
 - we train one model per identity, y_i being coded as +1 for patterns corresponding to this identity and as -1 for patterns corresponding to an other identity,
 - Drawback: difficulty to train them with a small training dataset.
- **Generative models** estimate the likelihood of the face image being a specific identity using models representing identities.

イロト イヨト イヨト イヨト

Simple to complex models to compute $\Lambda_C(X) = P(X|\lambda_C)$

- Gaussian Mixture Models (GMM) [Sanderson:2003],
- 1D Hidden Markov Models (1D-HMM) [Eickeler:2000],
- Pseudo-2D Hidden Markov Models (P2D-HMM) [Nefian:1999],
- Bayesian Networks (BNface) [Heusch:2009].

・ 回 と ・ ヨ と ・ ヨ と

Training

• using the Maximum Likelihood (ML) criterion via the Expectation Maximization (EM),

A lot of data is required to properly estimate model parameters.

• using a well trained generic (non-person specific) model as the starting point for ML training,

ML training still produces poor models.

 using Maximum a Posteriori (MAP) training [Gauvain:1994] (also called MAP adaptation).

This approach derives a client specific model from a generic model and circumvents the lack of data problem.

・ロト ・ 同ト ・ ヨト ・ ヨト

Decision

- Let us denote the parameter set for client C as λ_C and the parameter set describing a generic face (non-client specific) as λ_C.
- Given a claim for client C's identity and a set of T feature vectors $X = {\vec{x}_t}_{t=1}^T$ supporting the claim (extracted from the given face).
- We find an opinion on the claim using $\Lambda(X) = \log P(X|\lambda_C) \log P(X|\lambda_{\overline{C}})$

Decision

- We find an opinion on the claim using $\Lambda(X) = \log P(X|\lambda_C) \log P(X|\lambda_{\overline{C}})$ where:
 - $P(X|\lambda_C)$ is the likelihood of the claim coming from the true claimant
 - P(X|λ_C) is the likelihood of the claim coming from an impostor.
- The generic face model (also called *world model* or *Universal Background Model*) is trained with data from many people.
- The decision is then reached as follows: given a threshold τ , the claim is accepted when $\Lambda(X) \geq \tau$ and rejected when $\Lambda(X) < \tau$.

イロト イポト イヨト イヨト

Gaussian Mixture Model

GMM

• The likelihood of a set of feature vectors is given by

$$P(X|\lambda) = \prod_{t=1}^{T} P(\vec{x}_t|\lambda)$$
(3)

where

$$P(\vec{x}|\lambda) = \sum_{k=1}^{N_G} m_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \Sigma_k)$$
(4)

$$\lambda = \{m_k, \vec{\mu}_k, \Sigma_k\}_{k=1}^{N_G}$$
(5)

・ロ・ ・ 日・ ・ 日・ ・ 日・

Gaussian Mixture Model

GMM

• The likelihood of a set of feature vectors is given by

$$P(X|\lambda) = \prod_{t=1}^{T} \sum_{k=1}^{N_G} m_k \mathcal{N}(\vec{x}|\vec{\mu}_k, \Sigma_k)$$
(6)

- *N*(*x* | *μ*, Σ) is a *D*-dimensional Gaussian density function with mean *μ* and diagonal covariance matrix Σ.
- N_G is the number of gaussians and m_k is the weight for gaussian k (with constraints ∑^{N_G}_{k=1} m_k = 1 and ∀ k : m_k ≥ 0).

Gaussian Mixture Model

GMM

- Generally, each feature vector X describes a different part of the face (a local approach).
- We note that the spatial relations between face parts are lost (the position of each part does not matter in the likelihood estimation).
 - Advantage: this lead to a robustness to imperfect localization of the face,
 - Drawback: discriminatory information carried by spatial relations is lost. Fortunately, there is a simple way to restore a degree of spatial relations.

イロン イヨン イヨン イヨン

1D-Hidden Markov Model

1D HMM

• The face is represented as a sequence of overlapping *rectangular* blocks from top to bottom of the face:

- The model is characterized by the following:
 - N, the number of states in the model,
 - The state transition matrix $A = \{a_{ij}\},\$
 - The state probability distribution $B = \{b_j(\vec{x}_t)\}.$

- 4 回 ト - 4 三 ト

1D-Hidden Markov Model

N the number of states in the model

each state corresponds to a region of the face; $S = \{S_1, S_2, \dots, S_N\}$ is the set of states. The state of the model

 $S = \{S_1, S_2, \ldots, S_N\}$ is the set of states. The state of the model at row t is given by $q_t \in S$, $1 \le t \le T$, where T is the length of the observation sequence (number of rectangular blocks).

The state transition matrix $A = \{a_{ij}\}$

The topology of the 1D-HMM allows only self transitions or transitions to the next state:

$$a_{ij} = \begin{cases} P(q_t = S_j | q_{t-1} = S_i) & \text{for } j = i, \ j = i+1 \\ 0 & \text{otherwise} \end{cases}$$
(7)

The state probability distribution $B = \{b_i(\vec{x}_t)\}$

$$b_j(\vec{x}_t) = P(\vec{x}_t | q_t = S_j)$$

Prof S. Marcel - University of Cagliari 2010

Face Processing: from face detection to face recognition

1D Hidden Markov Model

1D HMM

- Compared to the GMM approach the spatial constraints are much more strict, mainly due to the rigid preservation of horizontal spatial relations (e.g. distance between the eyes).
- The vertical constraints are more relaxed, though they still enforce the top-to-bottom segmentation (e.g. the eyes have to be above the mouth).
- The relaxation of constraints allows for a degree of vertical translation and some vertical stretching (caused, for example, by an imperfect face localization).

・ 同 ト ・ ヨ ト ・ ヨ ト

Pseudo-2D Hidden Markov Model

2D HMM

• Emission probabilities of the HMM (now referred to as the "main HMM") are estimated through a secondary HMM (referred to as an "embedded HMM"):

• The states of the embedded HMMs are in turn modeled by a mixture of gaussians.

Prof S. Marcel – University of Cagliari 2010 Face Processing: from face detection to face recognition

Pseudo-2D Hidden Markov Model

2D HMM

- The degree of spatial constraints present in the P2D-HMM approach can be thought of as being somewhere in between the GMM and the 1D-HMM approaches. While the GMM approach has no spatial constraints and the 1D-HMM has rigid horizontal constraints, the P2D-HMM approach has relaxed constraints in both directions.
- However, the constraints still enforce the left-to-right segmentation of the embedded HMMs (e.g. the left eye has to be before the right eye), and top-to-bottom segmentation (e.g. like in the 1D-HMM approach, the eyes have to be above the mouth). The relaxed constraints allow for a degree of both vertical and horizontal translations, as well as some vertical and horizontal stretching of the face.

• • • • • • • • • • • • • •

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Database

BANCA

 BANCA (English) database with realistic conditions: controlled, degraded and adverse

Prof S. Marcel - University of Cagliari 2010

イロン イヨン イヨン イヨン Face Processing: from face detection to face recognition

Database

BANCA

- 12 recording sessions over several months, in different conditions and with different cameras,
- high variability in illumination, pose, resolution, background and quality of the camera.

- 4 同 ト - 4 三 ト - 4 三

Protocols

BANCA Protocols

• 7 distinct configurations that specify which images can be used for training and testing:

Test Sessions	Train Sessions				
	1	5	9	1,5,9	
C: 2-4 I: 1-4	Mc				
C: 6-8 I: 5-8	Ud	Md			
C: 10-12 I: 9-12	Ua		Ma		
C: 2-4,6-8,10-12 I: 1-12	Р			G	

Matched Controlled (Mc), Matched Degraded (Md), Matched Adverse (Ma), Unmatched Degraded (Ud),

Unmatched Adverse (Ua), Pooled test (P) and Grand test (G).

Performance Measure

Verification errors

- A verification system makes two types of errors:
 - False Acceptance (FA) when the system accepts an impostor,
 - False Rejection (FR) when the system refuses a true claimant.
- The performance is measured in terms of False Acceptance Rate (FAR) and False Rejection Rate (FRR)
- FAR and FRR are related (decreasing one increases the other),
- To aid the interpretation of performance, FAR and FRR are often combined using the Half Total Error Rate (HTER):

$$hter = \frac{far + frr}{2}$$

(9)

- 4 同 6 4 日 6 4 日 6

Experiment Results (manual)

System	Protocol			
	Мс	Ud	Ua	Р
PCA	9.5	20.9	20.8	18.4
LDA/NC	4.9	16.0	20.2	14.8
SVM	5.4	25.4	30.1	20.3
GMM <i>ML</i>	12.9	28.9	26.0	22.9
GMM init	12.8	29.7	28.3	23.8
GMM <i>MAP</i>	8.9	17.3	20.9	17.0
1D-HMM ML	9.1	17.8	17.1	15.9
1D-HMM init	9.1	15.6	17.4	14.7
1D-HMM MAP	6.9	16.3	17.0	14.7
P2D-HMM ML	9.0	19.0	18.0	17.5
P2D-HMM init	8.6	16.5	19.2	17.0
P2D-HMM MAP	* 4.6	* 15.3	* 13.1	* 13.5

Prof S. Marcel – University of Cagliari 2010

Face Processing: from face detection to face recognition

回 と く ヨ と く ヨ と

Experiment Results (auto)

System	Protocol			
	Мс	Ud	Ua	Р
PCA	22.4	29.7	33.7	29.0
LDA/NC	22.6	25.4	27.1	25.2
SVM	19.7	30.4	33.2	27.8
GMM <i>ML</i>	16.7	33.3	33.3	27.7
GMM init	19.8	35.0	35.1	29.7
GMM <i>MAP</i>	9.5	21.0	24.8	19.5
1D-HMM ML	21.0	28.8	29.5	27.0
1D-HMM init	21.3	30.1	31.4	28.1
1D-HMM MAP	13.8	25.9	23.4	21.7
P2D-HMM ML	12.1	25.2	26.9	22.3
P2D-HMM init	13.5	24.6	26.5	22.5
P2D-HMM MAP	* 6.5	* 15.9	* 14.7	* 14.7

Prof S. Marcel – University of Cagliari 2010

Face Processing: from face detection to face recognition

・回 と く ヨ と く ヨ と

-2

Discussion

Discussion

- Maximum a Posteriori (MAP) training circumvents the lack of data problem,
- Systems that utilize rigid spatial constraints between face parts (such as PCA and 1D-HMM based systems) are easily affected by face localization errors,
- Systems which have relaxed constraints (such as GMM and P2D-HMM based), are quite robust.

(4回) (4回) (日)

Outline

Face Recognition

- Face Recognition
- Challenges
- Normalization
- Feature Extraction
- Classification
- Statistical Model based Approaches
- Evaluation
- Research Directions

Research Directions

Challenges

- illumination normalization is still an issue,
- dealing with faces with multiple poses is still a problem as well,
- exploiting multiple faces in videos is problematic (scalability),
- model adaptation (or template update),
- spoofing.

Directions

- Local Binary Patterns could be used to reduce the effect of illumination,
- Bayesian Networks provide elegant generative models able to fuse multiple cues,
- Joint Factor Analysis and UBM-GMM Super-Vectors techniques could be used for model adaptation.

Prof S. Marcel – University of Cagliari 2010 Face Processing: from face detection to face recognition