Fast K-Means with Accurate Bounds

James Newling & François Fleuret

Idiap Research Institute
Computer Vision and Learning Group
& EPFL

June 20th, 2016
Given data \((x_i)_{i=1}^N \in (\mathbb{R}^d)^N\), find centers \((c_k)_{k=1}^K \in (\mathbb{R}^d)^K\) minimising

\[
\sum_{i=1}^{N} \min_{k=1:K} \|x_i - c_k\|^2.
\]

NP-hard, so heuristic algorithms such as Lloyd’s are used

Lloyd’s algorithm run for \(T\) iterations requires \(dKNT\) FLOPs

We are interested in making it faster
Lloyd’s Algorithm

× : data
● : centers
Lloyd’s Algorithm
Assignment of datapoint at iteration 1
Lloyd’s Algorithm
All assignments at iteration 1
Lloyd’s Algorithm
Updates at iteration 1
Lloyd’s Algorithm
Assignment of datapoint at iteration 2
Lloyd’s Algorithm
All assignments at iteration 2
Lloyd’s Algorithm

Updates at iteration 2
Lloyd’s Algorithm
Assignment of datapoint at iteration 3
Lloyd’s Algorithm
All assignments at iteration 3
Lloyd’s Algorithm
Updates at iteration 3
Lloyd’s Algorithm
Assignment of datapoint at iteration 4
Lloyd’s Algorithm
All assignments at iteration 4
Lloyd’s Algorithm
Updates at iteration 4
Lloyd’s Algorithm
How to Accelerate

Two approaches:

(1) approximate it

(2) be more efficient – get exactly the same output as Lloyd’s algorithm without all data-center distances

* Pellel et al. (1999)
* Kanungo et al. (2002)
△ Hamerly (2010)
△ Elkan (2003) best high-d
△ Yinyang (2015) best mid-d
△ Annular (2013) best low-d
Lloyd’s Algorithm
How to Accelerate

Two approaches:

1. Approximate it
 - Only exact for next 13 minutes

2. Be more efficient – get exactly the same output as Lloyd’s algorithm without all data-center distances

- Pellegr et al. (1999)
- Kanungo et al. (2002)
- Hamerly (2010)
- Elkan (2003) best high-d
- Yinyang (2015) best mid-d
- Annular (2013) best low-d
Elkan uses the triangle inequality in two distinct ways

(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances
Elkan uses the triangle inequality in two distinct ways

(1) center-center distances to bound data-center distances

(2) directly maintain bounds on data-center distances

(A) We show that (1) + (2) is slower than just (2). Simplifying helps!
Using The Triangle Inequality
Elkan $K - 1$ lower bounds
Using The Triangle Inequality
Yinyang group lower bounds
Using The Triangle Inequality
Hamirley 1 lower bound
Lower bound updating

\[\| \sum \cdot \| - \text{bound} \]

\[\sum \| \cdot \| - \text{bound} \]
All upper and lower bounds in Elkan, Hamerly, Yinyang, Annular are $\sum \parallel \cdot \parallel$-bounds, and can be replaced by tighter $\parallel \sum \cdot \parallel$-bounds.

There is a cost to $\parallel \sum \cdot \parallel$-bounds, additional memory is required:

- Store historical centers from all rounds
- Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing the history, requiring a $\sum \parallel \cdot \parallel$-bound update.
All upper and lower bounds in Elkan, Hamerly, Yinyang, Annular are $\sum || \cdot ||$-bounds, and can be replaced by tighter $\| \sum \cdot ||$-bounds.

There is a cost to $\| \sum \cdot ||$-bounds, additional memory is required:

- Store historical centers from all rounds
- Store the round in which bounds are made tight

This memory overhead can be controlled by periodically clearing the history, requiring a $\sum || \cdot ||$-bound update

(B) We show that $\| \sum \cdot ||$-bounding generally improves algorithms.
Hamerly (2010) bound test, failure 1
Hamerly (2010) bound test, failure 2
Hamerly (2010) compute all distances
Hamerly (2010) reset bounds
Eliminating distance calculations

\[c \notin B(x, r) \Rightarrow c \notin \{ c_{\text{new}}^a, c_{\text{new}}^b \} \]

\[r = \max_{c \in \{ c_{\text{old}}^a, c_{\text{old}}^b \}} \| x - c \| \]
Annular (2013) elimination zone

\[\|c\| > \|x\| + r \Rightarrow c \notin \mathcal{B}(x, r) \quad (\bullet : \text{centers eliminated}) \]
Annular (2013) elimination zone

\[\|c\| < \|x\| - r \Rightarrow c \notin B(x, r) \quad (\bullet: \text{centers eliminated}) \]
Annular (2013) elimination zone

\[\|c\| - \|x\| < r \Rightarrow c \notin B(x, r) \quad (\bullet \text{: centers eliminated}) \]
Annular (2013) elimination zone

\[|\|c\|-\|x\| | < r \implies c \notin \mathcal{B}(x, r) \quad (\bullet: \text{centers eliminated}) \]

elimination \(O(\log N) \) if \(\|c\| \) sorted
Annular (2013) elimination zone

\[|\|c\|-\|x\|| < r \Rightarrow c \not\in B(x, r) \quad (\therefore \text{: centers eliminated}) \]

elimination \(O(\log N)\) if \(|\|c\||\text{ sorted}\)
Exponion (ours) elimination zone

\[\| c - c_{a}^{old} \| > 2 \| x - c_{a}^{old} \| + \| x - c_{b}^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\| c - c_{a}^{old} \| > 2 \| x - c_{a}^{old} \| + \| x - c_{b}^{old} \| \Rightarrow c \notin B(x, r) \]
Exponion (ours) elimination zone

\[\|c - c^\text{old}_a\| > 2\|x - c^\text{old}_a\| + \|x - c^\text{old}_b\| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\| c - c_{\text{old}}^a \| > 2 \| x - c_{\text{old}}^a \| + \| x - c_{\text{old}}^b \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\| c - c_{old}^a \| > 2\| x - c_{old}^a \| + \| x - c_{old}^b \| \Rightarrow c \notin B(x, r) \]
Exponion (ours) elimination zone

\[\|c - c_a^{old}\| > 2\|x - c_a^{old}\| + \|x - c_b^{old}\| \Rightarrow c \notin B(x, r) \]
Exponent (ours) elimination zone

\[
\| c - c_a^{old} \| > 2\| x - c_a^{old} \| + \| x - c_b^{old} \| \Rightarrow c \not\in B(x, r)
\]
Exponent (ours) elimination zone

\[\| c - c_{a}^{old} \| > 2\| x - c_{a}^{old} \| + \| x - c_{b}^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\| c - c_a^{old} \| > 2 \| x - c_a^{old} \| + \| x - c_b^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

$$\| c - c_a^{old} \| > 2 \| x - c_a^{old} \| + \| x - c_b^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r)$$
Exponion (ours) elimination zone

\[\| c - c_a^{old} \| > 2\| x - c_a^{old} \| + \| x - c_b^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\| c - c_{a}^{old} \| > 2\| x - c_{a}^{old} \| + \| x - c_{b}^{old} \| \Rightarrow c \not\in \mathcal{B}(x, r) \]
Exponion (ours) elimination zone

\[\|c - c_{old}^a\| > R \Rightarrow c \notin B(x, r) \] (\(\bullet\) : centers eliminated)
Exponion (ours) elimination zone

(C) We find that Exponion is generally faster than Annular
Experiments and Results

22 datasets ($d : 2 \rightarrow 784, N : 60k \rightarrow 2.6m$) and $K \in \{100, 1000\}$
4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch
Experiments and Results

22 datasets ($d : 2 \rightarrow 784$, $N : 60k \rightarrow 2.6m$) and $K \in \{100, 1000\}$
4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) *Simplification accelerates,*
• Elkan in 16/18 high-d experiments, mean speed-up 15%
• Yinyang in 43/44 all-d experiments, mean speed-up 60%
Experiments and Results

22 datasets ($d : 2 \rightarrow 784$, $N : 60k \rightarrow 2.6m$) and $K \in \{100, 1000\}$
4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
• Elkan in 16/18 high-d experiments, mean speed-up 15%
• Yinyang in 43/44 all-d experiments, mean speed-up 60%

(B) Replacing $\sum \| \cdot \|$-bounding by $\| \sum \cdot \|$-bounding helps
• In high-d speed-up in 15/20 experiments, mean speed-up of 12%
Experiments and Results

22 datasets ($d : 2 \rightarrow 784$, $N : 60k \rightarrow 2.6m$) and $K \in \{100, 1000\}$
4 public code bases (mlpack, BaylorML, PowerGraph, VLFeat) +
+ all from scratch

(A) Simplification accelerates,
• Elkan in 16/18 high-d experiments, mean speed-up 15%
• Yinyang in 43/44 all-d experiments, mean speed-up 60%

(B) Replacing $\sum || \cdot ||$-bounding by $|| \sum \cdot ||$-bounding helps
• In high-d speed-up in 15/20 experiments, mean speed-up of 12%

(C) Exponion is generally faster than Annular
• In low-d Exponion is faster than Annular in 18/22 experiments,
 mean speed-up of 35%
Conclusion

Speed-up: run-times of any of the other 4 implementations of any algorithm relative to our fastest implementations of our algorithms.
Conclusion

Speed-up: run-times of any of the other 4 implementations of any algorithm relative to our fastest implementations of our algorithms

Our multi-threaded & easy-to-use code is available under an open source licence