A Vector Space for Distributional Semantics for Entailment

James Henderson Diana Nicoleta Popa Xerox Research Centre Europe

Abstract

We propose a vector-space model which provides a formal foundation for a distributional semantics of entailment. Using a mean-field approximation, we develop approximate inference procedures and entailment operators over vectors of probabilities of features being known (versus unknown). We use this framework to reinterpret the Word2Vec distributional-semantic model as approximating an entailment-based model of words in contexts, thereby predicting lexical entailment. In both unsupervised and semi-supervised experiments on hyponymy detection, we get substantial improvements over previous results.

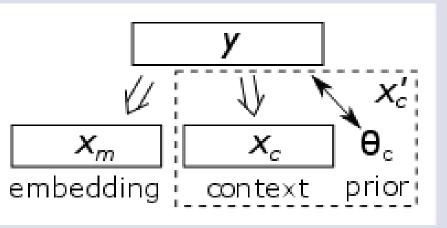
Distributional Semantics for Entailment

Model:

Exists a consistent unification y of the middle word x_m and its context x_c

 $\max_{V} \left(\log P(y \Rightarrow x_m, y \Rightarrow x_c, y \mid x_m, x_c) \right)$

 $= \max_{V} \left(\log P(y \Rightarrow x_m | x_m) + \log P(y \Rightarrow x_c | x_c) + \log P(y) \right)$



Embeddings:

We reinterpret Word2Vec vectors, mapping them into entailment vectors

log-odds: W2V vector interpreted as an entailment vector

Motivation

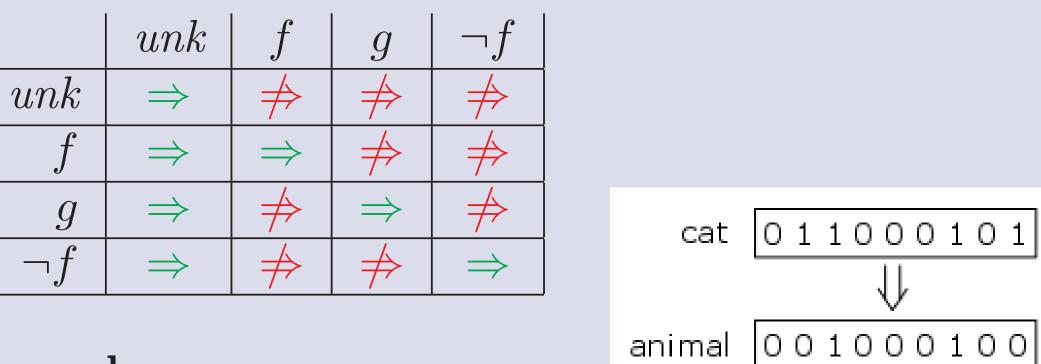
Distributional Semantics:

- The distributions of words in contexts reflect semantics
- Lexical semantic similarity can be captured by vector space embeddings trained on these distributions

Entailment:

y entails x $(y \Rightarrow x)$ iff everything known given x is also known given y

- Entailment is about known versus unknown, not true versus false
- Entailment is asymmetric $(f \Rightarrow unk, unk \neq f)$, unlike similarity



 $Y^+ = -\log \sigma(-X_m) - \log \sigma(-X_c) + \theta_c$ $\log P(y \Rightarrow x_m, y \Rightarrow x_c, y)$ $\approx Y^+ \otimes X_m + Y^+ \otimes X_c - \sigma(-Y^+) \cdot \theta_c$

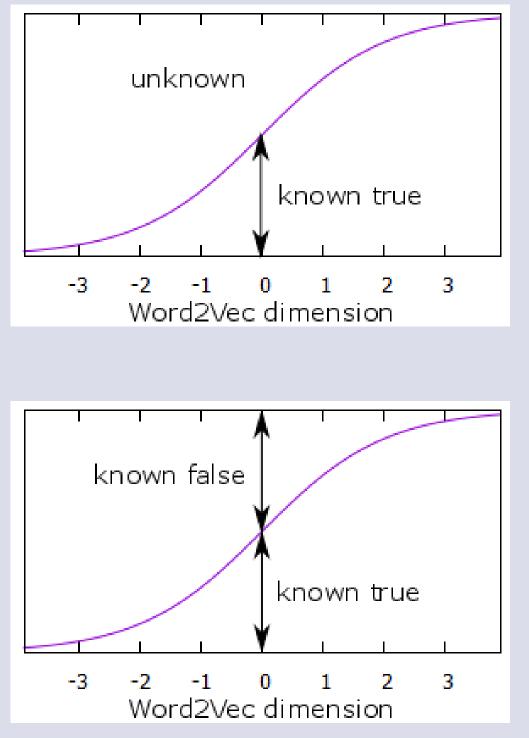
dup: W2V vector plus its negated duplicate

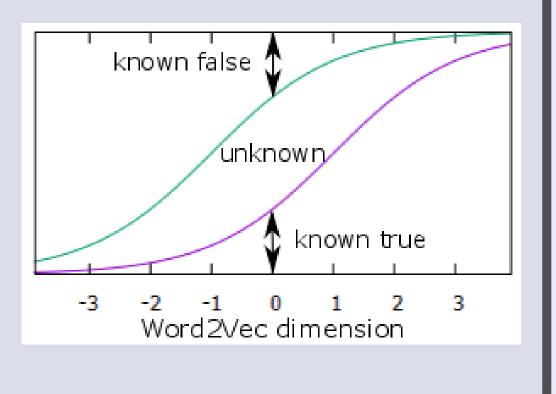
 $Y^+ = -\log \sigma(-X_m) - \log \sigma(-X_c) + \theta_c$ $Y^{-} = -\log \sigma(-(-X_m)) - \log \sigma(-(-X_c)) + -\theta_c$ $\log P(y \Rightarrow x_m, y \Rightarrow x_c, y)$ $\approx Y^+ \otimes X_m + Y^+ \otimes X_c - \sigma(-Y^+) \cdot \theta_c$ $+Y^{-} \otimes (-X_m) + Y^{-} \otimes (-X_c) - \sigma (-Y^{-}) \cdot (-\theta_c)$

unk dup: duplicated W2V vector with unknown around zero

 $Y^+ = -\log \sigma(-(X_m - 1)) - \log \sigma(-X_c) + \theta_c$ $Y^{-} = -\log \sigma(-(-X_m - 1)) - \log \sigma(-(-X_c)) + -\theta_c$ $\log P(y \Rightarrow x_m, y \Rightarrow x_c, y)$

 $\approx Y^+ \otimes (X_m - 1) + Y^+ \otimes X_c - \sigma(-Y^+) \cdot \theta_c$ $+Y^{-} \otimes (-X_m - 1)) + Y^{-} \otimes (-X_c) - \sigma (-Y^{-}) \cdot (-\theta_c)$





Proposal:

- A distributional semantics for lexical entailment
- where semantic entailment is captured in a vector space
- of probabilities of known versus unknown features

A Vector Space for Entailment

Framework:

- A framework for the represention and inference of known versus unknown features
- Derived from a mean-field approximation to probabilistic inference for discrete entailment
- Assumes a non-factorised prior, but factorised posterior

Vectors:

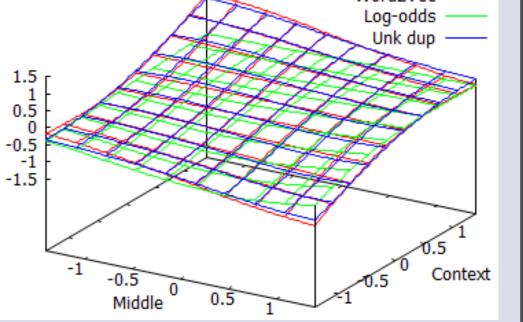
- vectors X of log-odds of features x_k being known, $P(x_k=1) = \sigma(X_k)$
- a non-factorised prior, $P(x_k) = \theta_k(X_{\overline{k}})$

Operators:

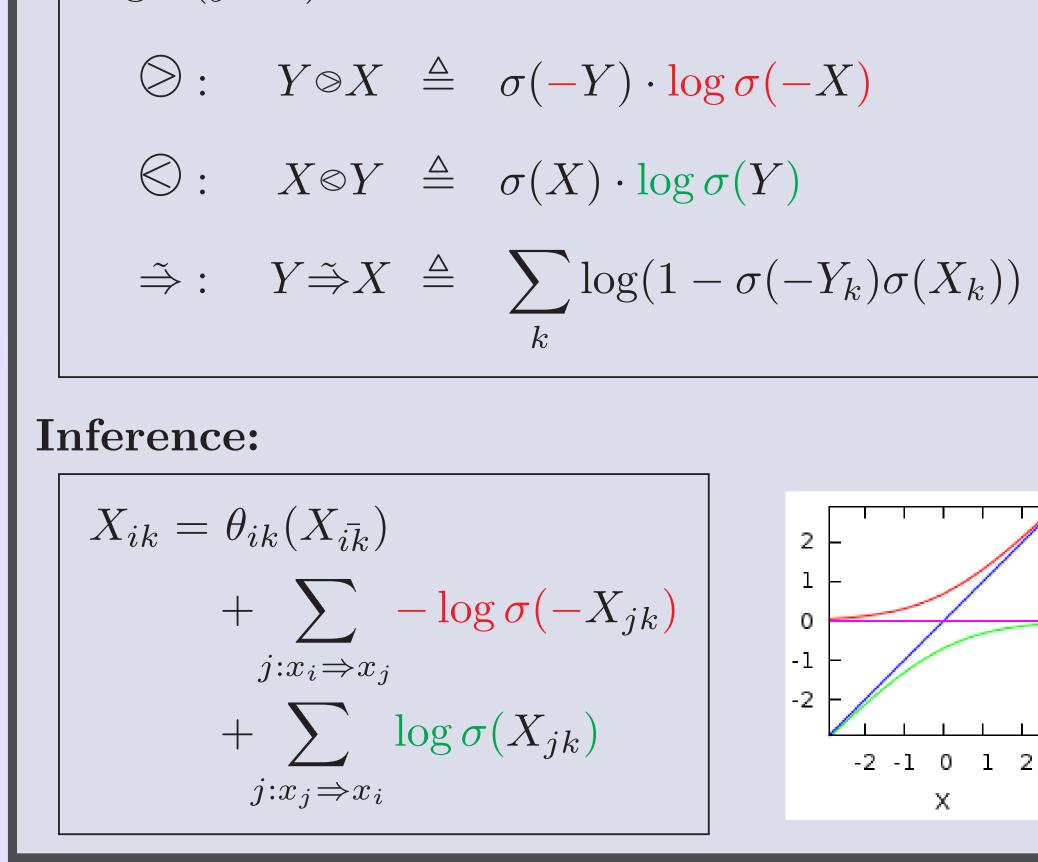
 $\log P(y \Rightarrow x) \approx$

The learning gradients for these three re-interpretations are an increasingly good match with the Word2Vec 1.5 1 0.5 learning gradient, where

word embedding $\approx X_m$ context vector $\approx X'_c \approx -\log \sigma(-X_c) + \theta_c$



Hyponymy Detection				
Unsupervised				Semi-supervised
operator	50% Acc	Ave Prec	Dir Acc	operator supervision 50% Acc Ave Prec Dir Acc
Weeds et.al.	58%			Weeds et.al. SVM 75% – –
$log-odds \otimes$	54.0%	55.9%	55.9%	mapped dif cross ent 64.3% 68.4% 72.3%
weighted cos	55.5%	54.6%	57.9%	$mapped \otimes cross ent$ 71.2% 73.5% 88.3%
dot	56.3%	54.4%	50%	$mapped \stackrel{\sim}{\Rightarrow} cross ent 77.4\% 82.4\% 92.6\% $
dif	56.9%	56.5%	59.6%	$mapped \ \ cross ent$ 80.1 % 86.3 % 90.0%
\log -odds $\tilde{\Rightarrow}$	57.0%	58.5%	59.4%	
log-odds	60.1%*	$61.3\%^{*}$	62.2%	• Better accuracies than previous work and sev-
dup	61.7%	61.5%	68.8%	eral baselines
$ unk \ dup \ \tilde{\Rightarrow}$	63.4%*	$67.3\%^{*}$	68.8 %	• More accurate re-interpretations of Word2Vec
$unk \ dup $	64.5 %	68.8 %	68.8 %	result in better accuracies



• Better unsupervised accuracies carry over to better semi-supervised accuracies On BLESS data from Weeds et al. (2014)

Conclusions

Contributions:

- a vector-space model for entailment, with entailment operators and vector inference
- a formal foundation for a distributional semantics of entailment
- a reinterpretation of Word2Vec embeddings for lexical entailment
- best unsupervised model of hyponymy detection, and state-of-the-art results with a semi-supervised vector space

Future work:

• compositional models of textual entailment