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ABSTRACT
Understanding the social context of eating is crucial for promot-
ing healthy eating behaviors. Multimodal smartphone sensor data
could provide valuable insights into eating behavior, particularly
in mobile food diaries and mobile health apps. However, research
on the social context of eating with smartphone sensor data is lim-
ited, despite extensive studies in nutrition and behavioral science.
Moreover, the impact of country differences on the social context
of eating, as measured by multimodal phone sensor data and self-
reports, remains under-explored. To address this research gap, our
study focuses on a dataset of approximately 24K self-reports on
eating events provided by 678 college students in eight countries
to investigate the country diversity that emerges from smartphone
sensors during eating events for different social contexts (alone or
with others). Our analysis revealed that while some smartphone
usage features during eating events were similar across countries,
others exhibited unique trends in each country. We further studied
how user and country-specific factors impact social context infer-
ence by developing machine learning models with population-level
(non-personalized) and hybrid (partially personalized) experimen-
tal setups. We showed that models based on the hybrid approach
achieve AUC scores up to 0.75 with XGBoost models. These find-
ings emphasize the importance of considering country differences
in building and deploying machine learning models to minimize
biases and improve generalization across different populations.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing.
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1 INTRODUCTION
The eating behavior of college students has significant implications
for their overall well-being. As a result, behavioral and nutrition sci-
entists have conducted extensive research on the interplay between
food consumption and health [27, 34]. To this end, prior research
has emphasized that eating is a holistic event with interconnected
dimensions such as the type of food, context, and time, among other
aspects [19]. The social context of eating is a factor that shapes
people’s food consumption, along with other contextual cues such
as mood and location [12, 26, 32]. While the social context is mul-
tidimensional, prior research has conceptualized eating alone or
with others as two basic types of social contexts. Therefore, several
studies have investigated the impact of eating alone versus eating
with others on food consumption [18, 42]. Moreover, the social
context of eating is associated with key aspects of eating episodes,
such as mood, physical condition, time, and location.

"Food and Nutrition" is among the most common categories of
mobile health applications, but most dietary pattern assessment
methodologies rely on Ecological Momentary Assessments (EMA)
and survey questionnaires [8]. However, measuring eating behavior
with such techniques is hardly ever done consistently, as self-reports
can be burdensome for users [20]. Moreover, typical dietary assess-
ment surveys do not always capture the social context and other
contextual cues associated with an individual’s food consumption
[36, 38]. As an alternative, longitudinal behavior modelingwithmul-
timodal sensing can address the challenges of dietary assessment
methods by capturing the interplay between food consumption and
contextual characteristics while replacing burdensome question-
naires [6, 28]. Inference models relying on features derived using
phone sensors (activity types, step count, location, app usage, typ-
ing and touch events, screen on and off episodes, etc.) can be used
to understand key contextual aspects affecting food consumption
[25, 26, 30]. However, the social context of eating, especially in the
case of multiple countries, has not systematically been studied with
mobile technologies.

Diversifying the data for training models by considering more
countries is fundamental to improving the performance of the mod-
els and their ability to generalize to a broader range of populations.
Generalizing research results by building diversity-aware models
can help overcome issues related to biases and reproducibility and
aim toward better generalizability of mobile sensing research across
different contexts [2, 3, 31, 33]. However, even though computer
vision and natural language processing research have studied cross-
country or cross-dataset generalization of models, mobile sensing
studies focused on longitudinal behavior modeling have started
doing so only recently [2, 23, 41]. Considering these aspects, this
paper aims to answer the following research questions:
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RQ1: What behavioral and contextual characteristics can be ex-
tracted from analyzing the social context surrounding eating events
among college students in eight countries, using multimodal smart-
phone sensing data and self-reports?
RQ2: Can multimodal phone sensor data be utilized to infer the
social context of eating events, and if so, how does the geographical
diversity affect the inference performance?

In answering these research questions, we provide the following
contributions.
Contribution 1: We conducted a study using a large dataset (24K
eating event self-reports and corresponding multimodal sensor data
from ten modalities) collected from college students in eight coun-
tries (UK, Italy, Denmark, Paraguay, Mongolia, Mexico, India, and
China) with the goal of identifying behavioral differences among
countries. We first conducted a descriptive analysis that demon-
strated the natural time-dependency of eating patterns and then
examined the hourly distribution of eating-alone versus eating-
with-others events across the eight countries to provide initial
evidence of cross-country diversity. We found that the hourly pat-
tern of the eating social context varies across countries as both
the time of eating and the social context are tied to social prac-
tices. Furthermore, we statistically analyzed the interplay between
smartphone features and the social context during eating events to
demonstrate possible differences across countries. We found that
while some features are used consistently across all settings, others
are only relevant in some countries.
Contribution 2: Using smartphone features and binary target data
on the social context of eating (alone or with others), we devel-
oped inference models with various methods. We trained a number
of model configurations: i) separate models for each country; ii)
aggregate models based on geographical proximity, such as Asia,
Latin America, and Europe, and iii) a model that pools data from
all countries. For each case, we evaluated population-level (non-
personalized) and hybrid (partially personalized) models using AUC
as the performance metric. The experimental results showed that
the AUC of population-level models was 0.58, while the hybrid
models achieved AUC scores of up to 0.75. We also analyzed the
feature importance extracted from the hybrid models to obtain fur-
ther insight into the cross-country differences of inference models.
By displaying all feature importances based on their common use
across all countries, we show that the same subset of features is
used consistently across all countries with varying degrees of rele-
vance. These findings provide a comprehensive understanding of
country diversity by revealing more complex relationships in the
data that could not be identified through statistical analysis alone.

2 BACKGROUND AND RELATEDWORK
2.1 Eating as a Holistic Event. Studies in nutrition and behavioral
sciences have shown that eating behavior is influenced by vari-
ous factors, including situational and behavioral ones. Bisogni et
al. [19] proposed a contextual framework for eating and drink-
ing events, which includes eight interconnected dimensions such
as “food and drink, time, location, activities, social context, men-
tal processes, physical condition, and recurrence”. Following this
framework, eating is considered a complex event that is influenced
by a range of internal and external factors, including the social

context. Researchers have highlighted the social context of meals
as a fundamental aspect of food consumption [12, 32]. The social
context itself comprises several dimensions, such as the type of
relationships or the number of participants. Specifically, whether an
individual is alone or with others has often been used in behavioral
studies as two key categories of social context [7, 18]. Prior research
in nutrition and behavioral sciences has demonstrated that eating
in highly social contexts is likely to influence the amount of food
consumed. The presence of one or more people during meals can
also lead to impression management or social facilitation, resulting
in under-eating and overeating, respectively [12, 17]. Therefore, the
longitudinal understanding of social context during eating events
could enable timely feedback and interventions for individuals who
use mobile health applications.
2.2 Multimodal Mobile Sensing for Eating Behavior Modeling. The
advancement ofmobile sensing technologies has allowed researchers
to monitor eating behaviors in real-time using wearable sensors
to detect eating events or characterize behavioral and contextual
attributes around eating episodes. Such developments in ubiquitous
computing have provided researchers with additional insight into
eating behaviors [4, 5, 15, 24, 29, 43]. Prior research has emphasized
the importance of studying the context surrounding eating events
to better understand an individual’s eating social context [13, 30].
However, most of these studies have primarily used self-reports
instead of sensor data. Moreover, the datasets used in these studies
were not collected frommultiple countries, limiting the ability to in-
vestigate country differences, as seen through both self-reports and
sensor data. In studies that use sensing for studying eating behavior,
Biel et al. [6] demonstrated that sensor data from phones could be
used to distinguish between meal and snack events. Meegahapola
et al. [28] showed that overeating events could be inferred with
multimodal sensor data with personalized accuracy of up to 87%.
Similarly, another study [25] used sensor data to infer the social
context during drinking events with accuracies in the range of 0.75-
0.86. However, despite being briefly discussed in one previous study
[26], no other study has extensively examined the social context of
eating with sensor data collected from multiple countries using the
same study protocol, thus allowing for intuitive comparisons.
2.3 Diversity Awareness. Previous studies in the field of machine
learning have highlighted the need to ensure model accuracy and
fairness across diverse populations [1]. The concept of data diver-
sity has been applied to various domains, including computer vision
and natural language processing [35]. However, applying data di-
versification to mobile sensing is challenging due to the lack of
large-scale multimodal datasets collected using a consistent pro-
tocol across multiple countries. Therefore, it is crucial to develop
diversity-aware approaches to machine learning-based modeling
of sensor data to examine model generalization across countries.
Mobile sensing data can exhibit diversity due to various factors
such as user behavior, differences in devices, and mobile networks
in the country of interest. Smartphone usage can also vary signifi-
cantly between countries, even within a given population, such as
students. While being used consistently in mobile sensing studies
without considering generalization to other countries, passive sens-
ing features from WiFi or location need to be considered with care
in deployment settings [2]. Recently, several research groups have
explored this direction of research by collecting multimodal sensing



Understanding the Social Context of Eating with Multimodal Smartphone Sensing: The Role of Country Diversity ICMI ’23, October 9–13, 2023, Paris, France

Table 1: Mobile Sensing Data Collection Summary.

Country (N) 𝜇 Age (𝜎) % Women # Self Reports # Eating Reports % Eating Alone
China (41) 26.2 (4.2) 51 30,406 1548 45
Denmark (24) 30.2 (6.3) 58 12,354 613 41
India (39) 23.7 (3.2) 53 4478 340 42
Italy (240) 24.1 (3.3) 58 176,135 12,697 28
Mexico (20) 24.1 (5.3) 55 11,908 773 40
Mongolia (214) 22.0 (3.1) 65 121,809 5,674 15
Paraguay (28) 25.3 (5.1) 60 11,790 729 29
UK (72) 26.6 (5.0) 66 31,989 1,599 51
Total (678) 24.2 (4.2) 58 400,829 23,973 36

datasets for multiple countries for longitudinal behavior modeling
[21, 23]. These studies have investigated the effect of distributional
shifts across countries. However, studies focusing on social con-
text inference during specific events such as eating and drinking
have only used data from one or two countries [22, 25]. Therefore,
no comparable multimodal smartphone sensing datasets exist for
similar analysis, as previous work relied on data collected with
contrasting protocols and features, hence restricting comparisons
across countries [26]. Therefore, the impact of country diversity
on social context inference during eating events, or eating events
in general, has not been thoroughly discussed and requires further
investigation.

3 DATA, FEATURES AND TARGET CLASSES
3.1 Dataset Information
To examine the research questions, we rely on a dataset used in
our previous work [14, 23]. This dataset was collected during an
in-the-wild study that was conducted over a four-week period in
November 2020, aimed to explore the everyday behavior of col-
lege students through multimodal mobile phone sensors. Deployed
in eight countries across various regions of the world with the
same protocol, the study aimed to investigate the effect of country
diversity on key aspects of mobile sensing.

The first data collection phase gathered demographic general
data about each participant. The second phase involved collecting
data through a smartphone application. Participants were asked to
fill out time diaries throughout the day, indicating what they were
doing (from 34 activities), location (from 26 semantic locations),
social context (from 8 configurations), and mood (valence with a
five-point scale).

In this study, we focus on eating events from the larger dataset,
which contains reports for a wide range of activities. Therefore,
we only considered the samples for which the reported activity is
eating, which drastically reduced the number of data points, with
eating events representing 5% to 7% of the data, depending on the
country. Table 1 presents statistics about the participants, including
the total number of reports and the number of eating reports, the
sample sizes are fairly uneven between countries ranging from 4478
to 176,135 reports. The participants were asked to choose from a
variety of categories when filling out self-reports; possible answers
for social context include: alone, with relatives, with friends, with
classmates, and so on. These answers were translated into a binary
target Alone orWith Others in linewith previous studies [18, 25, 42].
Table 1 also provides the class distributions for each country.

DATA

EXPERIMENTAL SETUP

CLASSIFICATION TASK

MODEL

Figure 1: High-Level Overview of the Study

3.2 Smartphone Sensing Features
The app continuously collected data from more than thirty smart-
phone sensors, divided into two categories: continuous sensing
modalities (activity type, step count, location, phone signal, WiFi,
Bluetooth, battery, and proximity) and interaction sensing modali-
ties (notifications clicking, application usage, screen episodes, and
user presence). A time-window-based approach was used to pro-
cess the feature data. All sensor measurements were aggregated
with self-reports to create features characterizing the time window
during which the report occurred. The length of the window was a
ten-minute window around eating event self-report, during which
statistics about each smartphone modality were computed [23],
obtaining over 100 features (more details in the appendix). Two
additional features were computed from timestamps: a binary fea-
ture stating whether the current day is a weekday or weekend and
the hour of report collection. Further, in the context of smartphone
sensing, missing data can occur for multiple reasons: device in low-
consumption mode, sensor failure, user privacy settings, airplane
mode, or simply the type of phone used, not including necessary
hardware. To deal with this issue, the feature modalities for which
more than 70% of the data was missing were dropped, namely: Blue-
tooth low energy, Bluetooth normal, Cellular GSM, and Cellular
WCDMA. While most of the tools used in this study were robust
against missing values, an imputed version of the dataset was still
needed in some cases. A k-Nearest Neighbor (k-NN) imputation
[39] was used to impute missing values from the remaining features
in training sets, whenever needed.

4 BEHAVIOR & CONTEXT AROUND EATING
SOCIAL CONTEXT (RQ1)

4.1 Methodology
To answer the first research question, a descriptive and statistical
analysis was conducted in three separate components. First, we
analyzed the hourly distribution of eating events with respect to the
social context using self-reports. Next, we performed a statistical
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analysis to explore the relationship between smartphone sensor
features and the two social contexts of eating. Lastly, we created a
two-dimensional embedding for the extracted sensor features to vi-
sually showcase the cross-country differences to better understand
the relationship between sensor data and eating social contexts.

4.1.1 Descriptive Analysis. As eating events are inherently time-
dependent, we analyzed the hourly distribution of eating reports for
all countries. We provided two separate density plots to investigate
how eating events were distributed during the day for different
social contexts (alone vs. with others) in Figure 2.We then examined
the hourly distribution of eating events to identify the relationship
between time and social context across countries.

4.1.2 Statistical Analysis. To understand the cross-country differ-
ences, the class distributions of each eating context outcome were
statistically analyzed to uncover features that define eating social
context in each country. Hence, t-tests were performed to under-
stand class distributions with mobile sensing features. The top five
features with the highest t-statistic [37] and p-values lesser than
0.05 were reported in Table 2 alongside the effect size (Cohen’s-d)
[11] 1. In order to gain insight into feature distributions across coun-
tries, in Figure 3, we plotted the effect sizes with features grouped
by sensor types such as location, WiFi, cellular data, notifications,
proximity, applications, activity, steps, and touch. The purpose of
this plot is to display which feature groups are the most important
and to provide a means of effectively analyzing differences between
countries.

4.1.3 Visualizing Diversity. We also present a method for visualiz-
ing individual self-reports in the high-dimensional feature space.
The t-Stochastic Neighbor Embedding (t-SNE) [40] algorithm was
used for this purpose. t-SNE is a dimensionality reduction tech-
nique that maps high-dimensional features to a two-dimensional
space for visualization purposes. First, t-SNE constructs a probabil-
ity distribution of high-dimensional features by assigning higher
probabilities to similar data points. Next, it defines a similar prob-
ability distribution over points in the low-dimensional space and
optimizes the embedding by minimizing the Kullback-Leibler (KL)
divergence between both distributions. In summary, t-SNE maps
each eating event in the high-dimensional feature space to a two-
dimensional point such that similar events are mapped to nearby
points, and dissimilar events are mapped to distant points with high
probability. This method allows us to gain insight into individual
self-reports and their relationships in the feature space. In order to
treat all dimensions with equal importance when performing the
dimensionality reduction, we re-scaled features with the Z-score.
Country Specific Embedding. A separate t-SNE analysis was con-
ducted on each country’s dataset to obtain a country-specific feature
space mapping. This analysis aimed to show how user-specific eat-
ing events are sensed by plotting each user’s eating events in a
different color. The first step was to standardize the data, as t-SNE
relies on a measure of similarity between data points. The embed-
ding was then fitted using the hyper-parameters: 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 30.0,
𝑒𝑎𝑟𝑙𝑦_𝑒𝑥𝑎𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 12.0, and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 200.0. However, for
most countries, the number of users was too high to plot all the

1As a rule of thumb, a value below 0.2: small effect size, a value of 0.5: medium effect
size, and a value of 0.8 or higher: large effect size.
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Figure 2: Hourly Distribution of Eating Events

sensed eating events for each user, which would have resulted in a
more difficult reading. So, for each country, only twenty users were
randomly selected for plotting after fitting the embedding on the
entire country’s dataset. Results are presented in Figure 4.
Multi-Country Embedding. A single t-SNE was also applied on the
whole dataset, comprising an aggregation of all countries, to investi-
gate country-specific behaviors by assigning a color to each country
and plotting the reports for each country in separate plots for clarity.
To avoid allowing the country with more data to imbalance the sto-
chastic embedding, a balanced aggregation of countries was created
by randomly selecting a subset of reports in each country. Then,
data were standardized, and the embedding was fitted using the
same parameters as before. While this approach employs individual
points for each report to reveal clusters, overlapping points can
make it challenging to observe how eating events are distributed in
the 2D plots. To compensate for this, an additional density plot was
presented where the 2D space was partitioned based on polar coor-
dinates, and the density of events in each partition was calculated,
as given in Figure 5 and Figure 6.

4.2 Results
4.2.1 Descriptive Analysis. Figure 2a and Figure 2b display the
hourly distributions of eating alone and with others events. As
these outcomes are measured during eating events, they naturally
follow the trend of the general eating schedule. It is worth noting
that as the classes are imbalanced, the dominant class pattern is
always close to the general eating schedule. Therefore, it is more
interesting to explore the hourly distribution of the minority class.
These plots enable us to better understand the eating context’s time
dependency across countries. In Figure 2a, we can observe that all
countries show a higher distribution of ‘alone’ reports during the
morning in comparison with the ‘with others’ distribution, sug-
gesting that breakfast might have been taken alone. This finding is
consistent with previous research in nutrition sciences, showing
that eating alone most commonly takes place in the morning and
midday [42]. Please note that the data was collected during the
covid19 pandemic year of 2020, so this influences typical social-
ization patterns. Moreover, the peak of ‘alone’ reports during the
evening for Italy significantly decreases, indicating that dinner is
more likely to happen with other people. So, the eating context is
time-dependent, and while this holds for all countries with varying
degrees, the patterns are not the same, which provides additional
evidence of the cross-country diversity regarding eating behaviors.

4.2.2 Statistical Analysis with Hypothesis Testing. The results of
the hypothesis testing are presented in Table 2. While some features
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Table 2: t-statistic (TS) and Cohen’s-d (CD). TS with p-values
above 0.05 andCDwith a 95% confidence interval overlapping
with 0 are marked with a star (*). p-values are reported after
the Bonferroni correction.

Country Feature TS CD Country Feature TS CD
proximity mean 3.15 0.19 app tools 3.09 0.23
app tools 2.48 0.13 location speed mean 2.60 0.17
app health & fitness 1.97 0.10* location radius of gyration 2.58 0.17
location_speed_max 1.80* 0.09* weekday 2.56 0.18

China

app_not_found 1.68* 0.13*

Mexico

hour 2.42 0.18

app tools 5.20 0.46 screen time total 6.25 0.24
weekday 4.77 0.38 screen max episodes 5.77 0.22
cellular lte std 3.52 0.35 screen # episodes 5.69 0.20
app communication 3.16 0.28 touch # events 5.15 0.17

Denmark

activity tilting 3.14 0.34

Mongolia

screen time / episode 4.83 0.19

wifi max rssi 9.01 1.36 weekday 3.63 0.28
wifi mean rssi 8.56 1.29 app tools 2.64 0.22
wifi std rssi 7.27 1.13 location_altitude_min 2.32 0.21
location altitude min 7.24 1.01 app board 2.15 0.13*

India

proximity std 3.24 0.5

Paraguay

app strategy 1.90* 0.12*
hour 19.02 0.37 app tools 6.06 0.32
weekday 9.26 0.18 hour 3.40 0.17
app tools 8.54 0.17 activity invehicle 3.39 0.22
wifi std rssi 5.94 0.14 activity onbicycle 3.36 0.22

Italy

wifi max rssi 5.77 0.14

UK

activity running 3.33 0.21

sdsdsd
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modality

.0

co
he

n'
s-
d

.2

.4

.6

.8

1.0

1.2

1.4 china
denmark
india
italy
mexico
mongolia
paraguay
uk

Figure 3: Effect Sizes for Social Context of Eating

are consistently used across countries, the vast majority of them
differ, highlighting the diversity in smartphone usage. Time-related
features rank among the most relevant for all countries except for
China, Mexico, and Paraguay, confirming the hourly distributions’
findings. Notably, the weekday feature is visible among features for
Denmark, Italy, Mexico, and Paraguay, indicating a different social
context depending on whether it is a weekend or a weekday. WiFi
features play a significant role in India, which could be because,
in the university where the study was conducted, students tend to
gather in places with WiFi network-dense areas to eat. The most
relevant features seem to point towards a measure of phone usage.
For example, in Mongolia, screen features indicate an increase
in smartphone usage, which could mean that the user is alone
when eating. The presence of proximity features in China is also
noteworthy. The proximity sensor is a good indicator of whether
a phone is in the user’s pocket/bag or hand, which could have a
relation with being with people. It is important to note that the
results are not all easily interpretable, and the table only shows
a selection of features. However, the variety of features across
countries provides a good display of cross-country diversity in the
sensor data, for the two eating social contexts.

China India Mongolia Mexico

Paraguay Italy Denmark UK

Figure 4: Country-Specific t-SNE: each color stands for a user.

4.2.3 Statistical Analysis on Effect Sizes and Feature Groups. Fig-
ure 3 presents the plot for effect sizes. It is observed that most
features have an effect size below 0.25, but some features have a
large effect size, and their Cohen’s-d 95% interval does not overlap
with zero, indicating higher reliability in results. The results show
that India has above-average effect sizes on most features, except
for activity-type features. Larger effect sizes were found for activity
features in China and UK, while Paraguay has low Cohen’s-d for
cellular and proximity features. Mongolia also had smaller effect
sizes for WiFi and notifications compared to other countries. These
differences may be attributed to cultural aspects or mobile networks
and hardware. In conclusion, analyzing effect sizes among feature
groups can help identify differences between countries and discover
which features could be useful for inference.

4.2.4 Visualizing Diversity with Country Specific Embeddings. Fig-
ure 4 shows the outcomes of the mappings, indicating that sensed
eating events are highly personalized for each user. The presence
of clusters of points of the same color across all countries indi-
cates that user behavior is distinct and that phone features could be
highly associated with the user’s habits. However, some countries,
such as China, exhibit less distinctive clusters, suggesting that sen-
sor features during eating events are more similar across users in
that country. The presence of clusters of the same color at different
locations on the plot could indicate that the same user’s behavior
varies across different contexts. Despite the loss of information
resulting from mapping a feature space from 96 dimensions to 2
dimensions, these plots demonstrate the variability across users in
the same country and how that variability applies in different parts
of the world.

4.2.5 Visualizing Diversity withMulti-Country Embedding. Figure 5
demonstrates the clustering of sensed eating events from each
country in different areas of the plot, indicating the high degree
of country-specificity. This highlights the necessity of developing
diversity-aware models that take into account the cross-cultural
variability in smartphone usage and eating behavior. The proximity
of the points in the low-dimensional space represents the similarity
between the sensed eating events. Although comparing distribu-
tions in two dimensions has its limitations, some general observa-
tions can still be made. For instance, in Figure 6, the clustering of
points for Denmark, the UK, and Italy suggests that these European
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China India Mongolia Mexico

Paraguay Italy Denmark UK

Figure 5: t-SNEfitted on aworldwide aggregation of countries,
each country’s eating events are plotted separately

China India Mongolia Mexico

Paraguay Italy Denmark UK

Figure 6: t-SNE fitted on the aggregation of all countries, the
country-specific density of eating-reports in the 2D space

countries have similar phone usage patterns during eating events.
In contrast, the sensed eating events from China, India, and Mon-
golia are located in opposite areas of the low-dimensional space,
indicating differences in smartphone use and cultural practices.

5 INFERRING THE SOCIAL CONTEXT OF
EATING (RQ2)

5.1 Methodology
The objective of this section of our study is to assess the capability
of eating social context inference models to generalize across users
and countries. We used smartphone sensor features collected within
a time interval around eating events as the input space and the
social context of eating as the target variable. We analyzed country-
specific models as well as multi-country models. A series of experi-
ments were carried out to compare the use of different inference
methods such as multi-layer perceptron neural networks (MLPs),
Random Forests, and Support Vector Classifiers. eXtreme Gradient
Boosting (XGboost), a regularizing gradient boosting framework,
[9] was chosen based on better performance and ease of adaptability
and tuning across experimental setups.

Despite having observed a significant time-dependency in the
eating behaviors, it was decided not to train separate models, e.g.,

weekend/weekdays, due to lack of data in weekends. However,
models trained on time-related features only were used as a base-
line to assess the added benefits of using smartphone sensing in
comparison with a naive prediction solely based on time features.
Finally, with a sample size ranging from 340 (India) to 12,667 (Italy)
eating reports, and given the class imbalance, special care was given
to addressing these issues when creating aggregations, performing
data splits, and evaluating the model performance.

Population-Level models are based on the leave-k-participants-
out cross-validation [16], which involves splitting data into training
and testing sets based on individual users, creating disjoint sets
between the two. The splitting is stratified to ensure that the per-
centage of Alone and With Others samples is maintained in both
sets. This allows for testing the model’s robustness against user-
specific behaviors, simulating a scenario where the model is trained
on a population, and new users join the system.

Hybrid models are based on K-fold cross-validation [16], and this
approach involves randomly splitting the data into training and
testing sets without considering individual users. The testing set
contains a fraction of the eating social context reports from each
user, and the splitting is done in a stratified manner to preserve
the percentage of Alone and With Others samples in each split.
This approach simulates a scenario where the model is trained on
a population, and the same participants provide additional reports
to the system, resulting in partially personalized models.

In all inference tasks, an interesting property of XGBoost was uti-
lized, which is the sparsity-aware split finding technique [10]. This
technique allows training on sparse data by letting tree branches
handle missing values. Initially, models were trained with both
imputed and sparse data. However, it was observed that the results
were slightly better when using the sparse method. Therefore, the
sparse method was chosen for all further training and testing.

The hyper-parameters of XGBoost have a large impact on its
performance and generalizability. To optimize these parameters,
nested cross-validation was used. The hyper-parameters considered
were the step size shrinkage (eta), the minimum loss reduction
required to make a split (gamma), the maximum tree depth (max
tree depth), and the minimum child weight (min child weight). Grid
search was used to find the best combination of hyper-parameters.
Five train/test folds were used to evaluate the models’ performance.
Each train set was further divided into five nested cross-validation
splits to determine the best parameters. The final hyper-parameters
were selected by choosing the most frequently picked parameters
among the five folds. To validate the performance of the models,
a random binary vector was generated and used as a baseline to
compare against the model’s prediction. In addition to the time-
based baseline, this baseline was used to verify that the prediction
outperformed a random guess.

The countries were aggregated based on their continental region,
clearly being aware of this oversimplifying assumption of similarity.
Thus, Europe was formed by combining Italy, the UK, and Denmark;
Latin America by combining Paraguay and Mexico; and Asia by
combining Mongolia, India, and China. All countries were then ag-
gregated to form a multi-country world dataset. An equal number
of users were selected from each country to ensure that the number
of eating reports in each country equaled the number of reports in
the country with the least reported eating events. Stratified group K
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Table 3: Mean (𝐴) and Standard Deviation (𝐴𝜎 ) of inference
AUC for population-level and hybridmodels, calculated with
XGBoost and Baseline (trained on time based features)

Population Level Hybrid
Model Baseline Random Model Baseline Random

China .48 (.05) .47 (.03) 0.5 .68 (.02) .50 (.02) 0.5
Denmark .52 (.08) .50 (.06) 0.5 .74 (.04) .57 (.03) 0.5
India .50 (.04) .49 (.03) 0.5 .75 (.06) .58 (.05) 0.5
Italy .58 (.01) .57 (.02) 0.5 .64 (.01) .57 (.01) 0.5
Mexico .53 (.05) .51 (.06) 0.5 .65 (.03) .57 (.01) 0.5
Mongolia .49 (.01) .50 (.01) 0.5 .57 (.01) .50 (.01) 0.5
Paraguay .49 (.06) .55 (.05) 0.5 .61 (.04) .55 (.03) 0.5
UK .55 (.04) .53 (.03) 0.5 .75 (.04) .56 (.02) 0.5
Latin America .53 (.02) .51 (.04) 0.5 .63 (.03) .54 (.02) 0.5
Asia .51 (.06) .52 (.04) 0.5 .72 (.03) .55 (.04) 0.5
Europe .56 (.05) .54 (.03) 0.5 .72 (.04) .56 (.02) 0.5
World .53 (.03) .53 (.02) 0.5 .69 (.02) .53 (.02) 0.5

fold splits were performed in each separate country to perform the
cross-validation splits for population-level models before aggregat-
ing them into one training and one testing set. The same procedure
was applied to hybrid models to maintain an equal amount of data
from each country in train and test sets. To ensure the generaliz-
ability of the results on country aggregations, selected users for the
majority of countries were resampled at each repetition.

The chosen metric for evaluating the results is the Area Under
the Receiver Operating Characteristic (AUC). Due to the limited
amount of data available, it was not feasible to perform more than
five folds on the countries with less data. However, evaluating mod-
els on just five folds can lead to uneven performances between
each run. Therefore, repeated stratified group K folds and repeated
stratified K folds were conducted for the population level and hy-
brid experimental setups, respectively. The number of repetitions
was set to 5, and the folds were randomized each time to obtain
different data splits. To summarize, the models were evaluated on
five repetitions of 5-fold validation, and the model performances
were averaged over the resulting 25 folds. One of the objectives of
building inference models is to leverage the feature importance as
additional information about cross-country diversity. The feature
importance coefficients were also averaged over the 25 folds.

5.2 Results
5.2.1 Population Level Results. In general, the country-specific
models trained with the population-level approach were unsatisfac-
tory, as shown in Table 3. Themodels exhibited uneven performance
across countries, where social context seems more easily inferred
in European countries than in Asia and Latin America. For instance,
the models achieved AUC scores of 0.52 (0.08) for Denmark, 0.55
(0.04) for the UK, 0.58 (0.01) for Italy, and 0.56 (0.05) for Europe
aggregate. The lower model variance observed in Italy could be
explained by the high number of users, which provided the model
with a more accurate picture of the population, leading to a compar-
atively robust model. Conversely, Denmark exhibited high model
variance (0.08), indicating that the model either performed well
or poorly, depending on the user split. This situation arises when
the social context is reflected differently across users, causing the
model to learn a trend that does not always apply to the remaining

Figure 7: XGBoost Feature Importance Values

users in the test set, depending on the split. This finding is con-
sistent with the tight clusters observed for Denmark in Figure 4,
pointing towards a variety of phone sensor features. Interestingly,
the world model provided good results comparatively, whereas Asia
and Latin America consistently outperformed the performance of
their respective countries. This could be attributed to the increase
in training samples being creating robust models to counter the
diversity in data. However, this conclusion should not hold in the
case where countries have sufficient data individually.

5.2.2 Hybrid Results. The inclusion of a fraction of each user’s data
in the models resulted in improvements in the results. For instance,
themodels for China, Mongolia, and Paraguay improved from show-
ing no predictive power to showing reasonable results, with AUCs
of 0.68 (0.02), 0.57 (0.01), and 0.61 (0.04), respectively. Generally,
the country-specific models showed reasonable performance with
an AUC of 0.75 (0.06) for India, 0.75 (0.04) for the UK, and 0.74
(0.04) for Denmark. The aggregations also provided good results
with AUC of 0.72 (0.03), 0.72 (0.04), and 0.69 (0.02) for Asia, Europe,
and World, respectively. These findings support the conclusions
made for population-level setups. However, Latin America suffered
from the country’s aggregation. In summary, the hybrid models
performed well and consistently outperformed the baseline based
on time features. The improvements observed with hybrid model
results are in line with the diversity of user practices observed in
Figure 4.

5.2.3 Feature Importance. The use of XGBoost results in a loss of
the natural explanatory power of models like Random Forests, but
it is still possible to extract feature importances. XGBoost outputs
a weight measure that reflects the number of times a feature is
used to split the data across all trees. After extracting the feature
importances at each evaluation split and averaging over the 25 folds,
the values are displayed in Figure 7 for hybrid models. The features
are ranked left to right, based on the mean across all configurations,
to visualize better which features are shared across countries and
continents. Higher feature importances in countries aggregations
are not necessarily ones used in any of the separate countries, which
leads us to think that feature importance cannot be approached as
the sum of individual ones in a cross-country context. India and
Asia had very strong feature importance on their most important
features, which imbalanced the color scale and reduced the contrast
in the rest of the plot. Therefore, the color scale was limited to a
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certain threshold visible at the top of the color bar, which means all
values beyond the threshold take a single color. It is worth noting
that the countries with the most data, Italy and Mongolia, have
a more spread-out use of features. The overall fading of the plots
towards less important features shows that the different models
tend to be using the same features, and the clear and dark tiles
that stand out highlight features that are specific to one country.
In summary, the feature importances resonate with the effect sizes
listed in Table 2 with the difference that the model has the ability
to leverage complex relations in the data that may not be visible
otherwise.

6 DISCUSSION
6.1 Implications
This study provides insights into the contextual characteristics
associated with eating events in different countries, which can aid in
understanding the differences between eating events from a mobile
sensing perspective. Our findings highlight the need to account for
country biases when building machine learning models based on
mobile sensing data, as these biases can arise from differences in
demographic attributes, lifestyle, culture, and other factors. Further,
the study shows how features associate with the social context of
eating events in different countries and shows the importance of
country diversity in how these events are sensed. The identification
of different user practices associated with eating events in different
countries provides useful insights for future data collection and
highlights the impact of country diversity on the sensing of eating
events. Therefore, we recommend that researchers consider relevant
contextual factors and country differences during the planning
phase of their studies for training models with multimodal data
that captures a range of situational and behavioral contexts.

Our study also reveals that some countries exhibit a degree of
similarity in terms of sensed eating events, but geographical prox-
imity cannot be used as a proxy for similar user behaviors. While
clear country-wise patterns and clusters arise when analyzing the
countries, the difference in scores for population-level versus hybrid
models, as well as the clusters observed in user behavior, highlight
the fact that social context differs greatly across users, even in
the same country. Moreover, the amount of user diversity among
countries is subject to variation, with user practices being more or
less spread out, and researchers should pay specific attention to
countries showing a higher level of diversity among users when
gathering data or designing studies. Finally, our study demonstrates
that feature importance can be used to extract insights into user
practices associated with eating events, highlighting the impor-
tance of accounting for the complex relations in the data that might
not be visible otherwise.

6.2 Limitations and Future Work
This study focuses on the impact of geographical diversity on the
eating social context, but it acknowledges that diversity is a mul-
tifaceted concept that encompasses more than just geographical
shifts. The results suggest that assuming similar cultural and social
behavior from people living in the same country only holds to a cer-
tain extent and that considering more granular aspects of diversity,

such as socioeconomic background or cultural norms, could im-
prove inference models’ accuracy. Future work can focus on these
aspects. Further, the use of additional APIs providing information
about location, weather, and behavior could be considered in future
studies for additional input of contextual information.

The study uses data that were collected at a single university in
each country, which has implications on the representativeness of
the samples of students that are considered. In addition, the number
of participants is uneven between universities leading to a fairly
high data imbalance between countries.

In addition, the data were collected during a period coinciding
with the surge of the Covid-19 pandemic in Europe, Paraguay, and
Mongolia, during which social distancing measures were imposed
or recommended. While the pandemic likely influenced and altered
participants’ behavior and social practices, the study’s findings
are expected to hold in the future as remote work/study settings
become more prevalent.

The analysis is limited to the two-class social context inference
task of determining if an individual is alone or with others, while
the dataset includes eight social contexts. While the variable offers
valuable insight for mobile food diaries, a more granular approach
to social context inference could help gain a better understand-
ing of eating events. The decision to use the two-class inference
was motivated by class imbalance, and the fact that the variable
is well populated across countries, which is not the case for other
class social contexts, making a similar analysis across countries
more challenging. Further, the mobile sensing data used in this
study can reveal sensitive information about the social context
of people, which has ethical implications. Therefore, researchers
must carefully consider and address ethical issues to maintain user
confidentiality and safeguard against any potential ethical issues.

7 CONCLUSION
This study used a mobile sensing dataset and over 24K self-reports
from 678 participants in eight countries, collected over a period
of four weeks, to investigate how geographic diversity affects the
eating social context inference. We performed an analysis and ex-
tracted key aspects of the behavioral and contextual differences that
emerge from sensing eating events in different countries. We also
evaluated country-specific and multi-country approaches trained
on multimodal mobile sensing data to infer eating alone vs. with
others, with population-level (non-personalized) and hybrid (par-
tially personalized) models. In addition, the study of feature im-
portance across different models provided additional insight into
geographical diversity. Overall, we highlight the potential for mo-
bile sensing-based machine learning models to generalize across
geographically diverse settings, for inferring the social context of
eating.
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