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Abstract. We are interested in the large-scale learning of Mahalanobis
distances, with a particular focus on person re-identification. We pro-
pose a metric learning formulation called Weighted Approximate Rank
Component Analysis (WARCA). WARCA optimizes the precision at top
ranks by combining the WARP loss with a regularizer that favors or-
thonormal linear mappings and avoids rank-deficient embeddings. Using
this new regularizer allows us to adapt the large-scale WSABIE proce-
dure and to leverage the Adam stochastic optimization algorithm, which
results in an algorithm that scales gracefully to very large data-sets. Also,
we derive a kernelized version which allows to take advantage of state-
of-the-art features for re-identification when data-set size permits kernel
computation. Benchmarks on recent and standard re-identification data-
sets show that our method beats existing state-of-the-art techniques both
in terms of accuracy and speed. We also provide experimental analysis
to shade lights on the properties of the regularizer we use, and how it
improves performance.
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1 Introduction

Metric learning methods aim at learning a parametrized distance function from
a labeled set of samples, so that under the learned distance, samples with the
same labels are nearby and samples with different labels are far apart [1]. Many
fundamental questions in computer vision such as “How to compare two images?
and for what information?” boil down to this problem. Among them, person
re-identification is the problem of recognizing individuals at different physical
locations and times, on images captured by different devices.

It is a challenging problem which recently received a lot of attention because
of its importance in various application domains such as video surveillance, bio-
metrics, and behavior analysis [2].

The performance of person re-identification systems relies mainly on the im-
age feature representation and the distance measure used to compare them.
Hence the research in the field has focused either on designing features [3, 4] or
on learning a distance function from a labeled set of images [5–8, 4, 9].
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It is difficult to analytically design features that are invariant to the vari-
ous non-linear transformations that an image undergoes such as illumination,
viewpoint, pose changes, and occlusion. Furthermore, even if such features were
provided, the standard Euclidean metric would not be adequate as it does not
take into account dependencies on the feature representation. This motivates the
use of metric learning for person re-identification.

Re-identification models are commonly evaluated by the cumulative match
characteristic (CMC) curve [6]. This measure indicates how the matching per-
formance of the algorithm improves as the number of returned image increases.
Given a matching algorithm and a labeled test set, each image is compared
against all the others, and the position of the first correct match is recorded.
The CMC curve indicates for each rank the fraction of test samples which had
that rank or better. A perfect CMC curve would reach the value 1 for rank #1,
that is the best match is always of the correct identity.

In this paper we are interested in learning a Mahalanobis distance by mini-
mizing a weighted rank loss such that the precision at the top rank positions of
the CMC curve is maximized. When learning the metric, we directly learn the
low-rank projection matrix instead of the PSD matrix because of the computa-
tional efficiency and the scalability to high dimensional datasets (see § 3.1). But
naively learning the low-rank projection matrix suffers from the problem of ma-
trix rank degeneration and non-isolated minima [10]. We address this problem
by using a simple regularizer which approximately enforces the orthonormality
of the learned matrix very efficiently (see § 3.2). We extend the WARP loss [11,
12, 10] and combine it with our approximate orthonormal regularizer to derive a
metric learning algorithm which approximately minimizes a weighted rank loss
efficiently using stochastic gradient descent (see § 3.3).

We extend our model to kernel space to handle distance measures which are
more natural for the features we are dealing with (see § 3.4). We also show that
in kernel space SGD can be carried out more efficiently by using precondition-
ing [13, 5].

We validate our approach on nine person re-identification datasets: Market-
1501 [14], CUHK03 [15], OpeReid [16], CUHK01 [17], VIPeR [18], CAVIAR [3],
3DPeS [19], iLIDS [20] and PRI450s [21], where we outperform other metric
learning methods proposed in the literature, both in speed and accuracy.

2 Related Works

Metric learning is a well studied research problem [22]. Most of the existing
approaches have been developed in the context of the Mahalanobis distance
learning paradigm [23, 1, 24, 5, 6]. This consists in learning distances of the form:

D2
M (xi, xj) = (xi − xj)TM(xi − xj), (1)

where M is a positive semi-definite matrix. Based on the way the problem is
formulated the algorithms for learning such distances involve either optimization
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in the space of positive semi-definite (PSD) matrices, or learning the projection
matrix W , in which case M = WTW .

Large margin nearest neighbors [1] (LMNN) is a metric learning algorithm
designed to maximize the performance of k-nearest neighbor classification in
a large margin framework. Information theoretic metric learning [24] (ITML)
exploits the relationship between the Mahalanobis distance and Gaussian distri-
butions to learn the metric. Many researchers have applied LMNN and ITML
to re-identification problem with varying degree of success [21].

Pairwise Constrained Component Analysis (PCCA) [5] is a metric learning
method that learns the low rank projection matrix W in the kernel space from
sparse pairwise constraints. Xiong et al. [8] extended PCCA with a L2 regular-
ization term and showed that it further improves the performance.

Köstinger et al. [6] proposed the KISS (“Keep It Simple and Straight for-
ward”) metric learning abbreviated as KISSME. Their method enjoys very fast
training and they show good empirical performance and scaling properties along
the number samples. However this method suffers from of the Gaussian assump-
tions on the model.

Li et al. [7] consider learning a local thresholding rule for metric learning.
This method is computationally expensive to train, even with as few as 100
dimensions.

The performance of many kernel-based metric learning methods for person re-
identification was evaluated in [8]. In particular the authors evaluated PCCA [5],
variants of kernel Fisher discriminant analysis (KFDA) and reported that the
KFDA variants consistently out-perform all other methods. The KFDA variants
they investigated were Local Fisher Discriminant Analysis (LFDA) and Marginal
Fisher Discriminant Analysis (MFA).

Chen et al. [25] attempt to learn a metric in the polynomial feature map
exploiting the relationship between Mahalanobis metric and the polynomial fea-
tures. Ahmed et al. [26] propose a deep learning model which learns the features
as well as the metric jointly. Liao et al. [4] propose XQDA exploiting the bene-
fits of Fisher discriminant analysis and KISSME to learn a metric. However like
FDA and KISSME, XQDA’s modeling power is limited because of the Gaussian
assumptions on the data. In another work Liao et al. [9] apply accelerated prox-
imal gradient descent (APGD) to a Mahalanobis metric under a logistic loss
similar to the loss of PCCA [5]. The application of APGD makes this model
converge fast compared to existing batch metric learning algorithms but still
it suffers from scalability issues because all the pairs are required to take one
gradient step and the projection step on to the PSD cone is computationally
expensive.

None of the above mentioned techniques explicitly models the objective that
we are looking for in person re-identification, that is to optimize a weighted
rank measure. We show that modeling this in the metric learning objective im-
proves the performance. We address scalability through stochastic gradient de-
scent (SGD) and our model naturally eliminates the need for asymmetric sample
weighting as we use triplet based loss function.
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There is an extensive body of work on optimizing ranking measures such as
AUC, precision at k, F1 score, etc. Most of this work focuses on learning a linear
decision boundary in the original input space, or in the feature space for ranking
a list of items based on the chosen performance measure. A well known such
model is the structural SVM [27]. In contrast here we are interested in ranking
pairs of items by learning a metric. A related work by McFee et al. [28] studies
metric learning with different rank measures in the structural SVM framework.
Wu et al. [29] used this framework to do person re-identification by optimizing
the mean reciprocal rank criterion. Outside the direct scope of metric learning
from a single feature representation, Paisitkriangkrai et al. [30] developed an en-
semble algorithm to combine different base metrics in the structural SVM frame-
work which leads to excellent performance for re-identification. Such an approach
is complementary to ours, as combining heterogeneous feature representations
requires a separate additional level of normalization or the combination with a
voting scheme.

We use the WARP loss from WSABIE [12], proposed for large-scale image
annotation problem, that is a multi-label classification problem. WSABIE learns
a low dimensional joint embedding for both images and annotations by optimiz-
ing the WARP loss. This work reports excellent empirical results in terms of
accuracy, computational efficiency, and memory footprint.

The work that is closely related to us is FRML [10] where they learn a
Mahalanobis metric by optimizing the WARP loss function with SGD. However
there are some key differences with our approach. FRML is a linear method using
L2 or LMNN regularizer, and relies on an expensive projection step in the SGD.
Beside, this projection requires to keep a record of all the gradients in the mini-
batch, which results in high memory footprint. The rationale for the projection
step is to accelerate the SGD because directly optimizing low rank matrix may
result in rank deficient matrix and thus result in non-isolated minimizers which
might generalize poorly to unseen samples. We propose a computationally cheap
solution to this problem by using a regularizer which approximately enforces the
rank of the learned matrix efficiently.

Table 1: Notation
N Number of training samples
D Dimension of training samples
Q Number of classes
(xi, yi) ∈ RD × {1, . . . , Q} i-th training sample
1condition is equal to 1 if the condition is true, 0 otherwise
S the pairs of indices of samples of same class
Ty the indices of samples not of class y
FW distance function under the linear map W
ranki,j(FW ) for i and j of same label, no. of miss-labeled points closer to i than j is
L(W ) the loss we minimize
L(r) rank weighting function
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3 Weighted Approximate Rank Component Analysis

This section presents our metric learning algorithm, Weighted Approximate
Rank Component Analysis (WARCA). Table 1 summarizes some important no-
tations that we use in the paper.

Let us consider a training set of data point / label pairs:

(xn, yn) ∈ RD × {1, . . . , Q}, n = 1, . . . , N. (2)

and let S be the set of pairs of indices of samples of same labels:

S =
{

(i, j) ∈ {1, . . . , N}2, yi = yj
}
. (3)

For each label y we define the set Ty of indices of samples of a class different
from y:

Ty = {k ∈ {1, . . . , N}, yk 6= y} . (4)

In particular, to each (i, j) ∈ S corresponds a set Tyi .
Let W be a linear transformation that maps the data points from RD to RD′

,
with D′ ≤ D. For the ease of notation, we do not distinguish between matrices
and their corresponding linear mappings. The distance function under the linear
map W is given by:

FW (xi, xj) = ‖W (xi − xj)‖2. (5)

3.1 Problem Formulation

For a pair of points (i, j) of same label yi = yj , we define a ranking error function:

∀(i, j) ∈ S, err(FW , i, j) = L (ranki,j (FW )) (6)

where:
ranki,j (FW ) =

∑
k∈Tyi

1FW (xi,xk)≤FW (xi,xj). (7)

is the number of samples xk of different labels which are closer to xi than xj is.
Formulating our objective that way, following closely the formalism of [12],

shows how training a multi-class predictor shares similarities with our metric-
learning problem. The former aims at avoiding, for any given sample to have
incorrect classes with responses higher than the correct one, while the latter
aims at avoiding, for any pair of samples (xi, xj) of the same label, to have
samples xk of other classes in between them.

Minimizing directly the rank treats all the rank positions equally, and usually
in many problems including person re-identification we are interested in maxi-
mizing the correct match within the top few rank positions. This can be achieved
by a weighting function L(·) which penalizes more a drop in the rank at the top
positions than at the bottom positions. In particular we use the rank weighting
function proposed by Usunier et al. [11], of the form:

L(r) =

r∑
s=1

αs, α1 ≥ α2 ≥ ... ≥ 0. (8)
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For example, using α1 = α2 = ... = αm will treat all rank positions equally, and
using higher values of αs in top few rank positions will weight top rank positions
more. We use the harmonic weighting, which has such a profile and was also
used in [12] as it yielded state-of-the-art results on their application.

Finally, we would like to solve the following optimization problem:

argmin
W

1

|S|
∑

(i,j)∈S

L (ranki,j (FW )) . (9)

3.2 Approximate OrthoNormal (AON) Regularizer

The optimization problem of Equation 9 may lead to severe over-fitting on
small and medium scale datasets. Regularizing penalty terms are central in re-
identification for that reason.

The standard way of regularizing a low-rank metric learning objective func-
tion is by using a L2 penalty, such as the Frobenius norm [10]. However, such
a regularizer tends to push toward rank-deficient linear mappings, which we
observe in practice (see § 4.4, and in particular Figure 2a).

Lim et al. [10] in their FRML algorithm, addresses this problem by using a
Riemannian manifold update step in their SGD algorithm, which is computation-
ally expensive and induces a high memory footprint. We propose an alternative
approach that maintains the rank of the matrix by pushing toward orthonormal
matrices. This is achieved by using as a penalty term the L2 divergence of WWT

from the identity matrix I :
‖WWT − I‖2. (10)

This orthonormal regularizer can also be seen as a strategy to mimic the be-
havior of approaches such as PCA or FDA, which ensure that the learned linear
transformation is orthonormal. For such methods, this property emerges from
the strong Gaussian prior over the data, which is beneficial on small data-sets but
degrades performance on large ones where it leads to under-fitting. Controlling
the orthonormality of the learned mapping through a regularizer weighted by a
meta-parameter λ allows us to adapt it on each data-set individually through
cross-validation.

Finally, with this regularizer the optimization problem of Equation 9 be-
comes:

argmin
W

λ

2
‖WWT − I‖2 +

1

|S|
∑

(i,j)∈S

L (ranki,j (FW )) . (11)

3.3 Max-Margin Reformulation

The metric learning problem in Equation 11 aims at minimizing the 0-1 loss,
which is a difficult optimization problem. Applying the reasoning behind the
WARP loss to make it tractable, we upper-bound this loss with the hinge one
with margin γ. This is equivalent to minimizing the following loss function:
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L(W ) =
λ

2
‖WWT − I‖2 +

1

|S|
∑

(i,j)∈S

∑
k∈Tyi

L(rankγi,j(FW ))
|γ + ξijk|+
rankγi,j(FW )

, (12)

where:

ξijk = FW (xi, xj)−FW (xi, xk) (13)

and rankγi,j(FW ) is the margin penalized rank:

rankγi,j(FW ) =
∑
k∈Tyi

1γ+ξijk>0. (14)

The loss function in Equation 12 is the WARP loss [11, 12, 10]. It was shown
by Weston et al. [12] that the WARP loss can be efficiently solved by using
stochastic gradient descent and we follow the same approach:

1. Sample (i, j) uniformly at random from S.
2. For the selected (i, j) uniformly sample k in {k ∈ Tyi : γ + ξijk > 0}, i.e.

from the set of incorrect matches scored higher than the correct match xj .

The sampled triplet (i, j, k) has a contribution of L(rankγi,j(FW ))|γ+ ξijk|+ be-

cause the probability of drawing a k in step 2 from the violating set is 1
rankγi,j(FW )

.

We use the above sampling procedure to solve WARCA efficiently using mini-
batch stochastic gradient descent (SGD). We use Adam SGD algorithm [31],
which is found to converge faster empirically compared to vanilla SGD.

3.4 Kernelization

Most commonly used features in person re-identification are histogram-based
such as LBP, SIFT BOW, RGB histograms to name a few. The most natural
distance measure for histogram-based features is the χ2 distance. Most of the
standard metric learning methods work on the Euclidean distance with PCCA
being a notable exception. To plug any arbitrary metric which is suitable for the
features, such as χ2, one has to resort to explicit feature maps that approximate
the χ2 metric. However, it blows up the dimension and the computational cost.
Another way to deal with this problem is to do metric learning in the kernel
space, which is the approach we follow.

Let W be spanned by the samples:

W = AXT = A

 xT1
. . .
xTN

 . (15)

which leads to:

FA(xi, xj) = ‖AXT (xi − xj)‖2, (16)

= ‖A(κi − κj)‖2. (17)
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Where κi is the ith column of the kernel matrix K = XTX. Then the loss
function in Equation 12 becomes:

L(A) =
λ

2
‖AKAT − I‖2 +

1

|S|
∑

(i,j)∈S

∑
k∈Tyi

L(rankγi,j(FA))
|γ + ξijk|+
rankγi,j(FA)

, (18)

with:

ξijk = FA(xi, xj)−FA(xi, xk). (19)

Apart from being able to do non-linear metric learning, kernelized WARCA
can be solved efficiently again by using stochastic sub-gradient descent. If we
use the inverse of the kernel matrix as the pre-conditioner of the stochastic sub-
gradient, the computation of the update equation, as well the parameter update,
can be carried out efficiently. Mignon et al. [5] used the same technique to solve
their PCCA, and showed that it converges faster than vanilla gradient descent.
We use the same technique to derive an efficient update rule for our kernelized
WARCA. A stochastic sub-gradient of Equation 18 with the sampling procedure
described in the previous section is given as:

∇L(A) = 2λ(AKAT − I)AK + 2L(rankγi,j(FA))A1γ+ξijk>0Gijk, (20)

where:

Gijk =
(κi − κj)(κi − κj)T

dij
− (κi − κk)(κi − κk)T

dik
, (21)

and:

dij = FA(xi, xj), dik = FA(xi, xk). (22)

Multiplying the right hand side of Equation 20 by K−1:

∇L(A)K−1 = 2λ(AKAT − I)A + 2L(rankγi,j(FA))AK1γ+ξijk>0Eijk. (23)

with:

Eijk = K−1GijkK−1 =
(ei−ej)(ei−ej)T

dij
− (ei−ek)(ei−ek)T

dik
. (24)

where el is the lth column of the canonical basis that is the vector whose lth

component is one and all others are zero. In the preconditioned stochastic sub-
gradient descent we use the updates of the form:

At+1 = (I−2λη(AtKA
T
t −I))At−2ηL(rankγi,j(FA))AtK1γ+ξijk>0Eijk. (25)

Please note that Eijk is a very sparse matrix with only nine non-zero entries. This
makes the update extremely fast. Preconditioning also enjoys faster convergence
rates since it exploits second order information through the preconditioning op-
erator, here the inverse of the kernel matrix [13].
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4 Experiments

We evaluate our proposed algorithm on nine standard person re-identification
datasets. We first describe the datasets and baseline algorithms and then present
our results. Our code will be made publicly available.

4.1 Datasets and Baselines

The largest dataset we experimented with is the Market-1501 dataset [14]
which is composed of 32,668 images of 1,501 persons captured from 6 differ-
ent view points. It uses DPM [32] detected bounding boxes as annotations.
CUHK03 dataset [15] consists of 13,164 images of 1,360 persons and it has
both DPM detected and manually annotated bounding boxes. We use the man-
ually annotated bouding boxes here. OpeReid dataset [16] consists of 7,413
images of 200 persons. CUHK01 dataset [17] is composed of 3,884 images of
971 persons, with two pairs of images per person, each pair taken from a different
viewpoint.VIPeR [18] dataset has 1,264 images of 632 person, with 2 images per
person. The PRID450s dataset [21] consists of 450 image pairs recorded from
two different static surveillance cameras. The CAVIAR dataset [3] consists of
1,220 images of 72 individuals from 2 cameras in a shopping mall. The 3DPeS
dataset [19] has 1,011 images of 192 individuals, with 2 to 6 images per person.
The dataset is captured from 8 outdoor cameras with horizontal but significantly
different viewpoints. Finally the iLIDS dataset [20] contains 476 images and 119
persons, with 2 to 8 images per individual.

We compare our method against the current state-of-the-art baselines MLAPG,
rPCCA, SVMML, FRML, LFDA and KISSME. A brief overview of these meth-
ods is given in section 2. rPCCA, MLAPG, SVMML, FRML are iterative meth-
ods whereas LFDA and KISSME are spectral methods on the second order
statistics of the data. Since WARCA, rPCCA and LFDA are kernel methods we
used both the χ2 kernel and the linear kernel with them to benchmark the per-
formance. Marginal Fisher discriminant analysis (MFA) is proven to give similar
result as that of LFDA so we do not use them as the baseline.

We did not compare against other ranking based metric learning methods
such as LORETA [33], OASIS [34] and MLR [28] because all of them are linear
methods. In fact we derived a kernelized OASIS but the results were not as good
as ours or rPCCA. We also do not compare against LMNN and ITML because
many researchers have evaluated them before [5–7] and found out that they do
not perform as well as other methods considered here.

4.2 Technical Details

For the Market-1501 dataset we used the experimental protocol and features
described in [14]. We used their baseline code and features. As Market-1501
is quite large for kernel methods we do not evaluate them. We also do not
evaluate the linear methods such as Linear rPCCA and SVMML because their
optimization algorithms were found to be very slow.
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Table 2: Table showing the rank 1, rank 5 and AUC performance measure of
our method WARCA against other state-of-the-art methods. Bold fields indicate
best performing methods. The dashes indicate computation that could not be
run in a realistic setting on Market-1501

(a) Rank 1 accuracy

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME

Market-1501 − 45.16±0.00 − − − − − − 34.65±0.00 42.81±0.00
CUHK03 78.38±2.44 62.12±2.07 76.74±2.06 59.22±2.65 44.90±1.57 53.87±2.31 47.89±2.59 69.94±2.21 46.02±1.55 47.88±1.80
CUHK01 58.34±1.26 39.30±0.76 48.55±1.12 34.73±1.06 22.92±0.94 33.58±0.69 27.96±0.86 54.25±1.04 33.74±0.73 35.74±0.95
OpeReid 57.65±1.60 43.74±1.34 52.89±1.78 43.66±1.45 40.63±1.31 42.27±1.35 30.63±1.51 53.58±1.65 42.84±1.18 41.76±1.36
VIPeR 37.47±1.70 20.86±1.04 22.25±1.91 15.91±1.16 19.49±2.26 18.52±0.78 23.28±1.53 36.77±2.10 20.22±1.85 20.89±1.22
PRID450s 24.58±1.75 10.33±1.20 16.35±1.30 8.34±1.25 2.13±0.59 7.05±1.60 13.08±1.63 24.31±1.44 3.24±0.95 15.24±1.56
CAVIAR 43.44±1.82 39.35±1.98 37.56±2.17 27.26±2.15 36.74±1.96 35.40±2.67 26.82±1.64 41.29±2.25 37.72±2.08 31.99±2.17
3DPeS 51.89±2.27 43.57±2.18 46.42±2.25 33.12±1.58 41.17±2.26 39.03±1.85 29.94±2.10 51.44±1.40 43.24±2.57 37.55±1.80
iLIDS 36.61±2.40 31.77±2.77 26.57±2.60 23.07±3.07 31.13±1.57 25.68±2.25 21.32±2.89 36.23±1.89 32.70±3.12 28.29±3.59

(b) Rank 5 accuracy

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME

Market-1501 − 68.23±0.00 − − − − − − 52.76±0.00 62.74±0.00
CUHK03 94.55±1.31 86.03±1.62 94.50±1.29 84.52±1.41 71.80±1.52 80.36±1.22 79.97±2.08 90.15±1.27 65.41±1.66 69.29±2.35
CUHK01 79.76±0.69 61.84±0.98 73.29±1.32 56.67±1.20 48.48±1.49 55.27±0.83 53.11±0.78 74.60±1.00 49.73±0.91 53.34±0.69
OpeReid 80.43±1.71 67.39±1.02 77.95±1.82 67.68±1.25 61.45±1.61 66.08±1.30 60.32±1.31 75.34±1.76 59.70±1.37 61.74±1.55
VIPeR 70.78±2.43 50.29±1.61 53.82±2.32 42.71±2.02 46.49±2.23 46.15±1.62 55.28±1.99 69.30±2.23 45.25±1.90 47.73±2.28
PRID450s 55.52±2.23 31.73±3.08 43.82±2.18 26.89±2.21 11.29±1.66 24.16±3.04 38.38±1.77 54.58±2.06 12.55±1.41 37.22±1.81
CAVIAR 74.06±3.13 68.06±2.44 70.62±2.26 57.44±2.48 65.83±2.73 66.24±3.08 61.53±3.64 69.12±3.02 61.60±2.94 61.17±3.21
3DPeS 75.64±2.80 68.26±1.91 73.54±2.26 58.34±2.31 65.06±1.89 65.20±2.15 59.52±2.62 75.36±1.91 65.64±1.91 60.22±2.05
iLIDS 66.09±2.31 59.27±3.12 57.07±2.93 51.55±3.59 57.31±3.12 53.42±2.17 51.45±4.30 65.20±2.68 59.66±2.51 54.08±3.63

(c) AUC score

Dataset WARCA-χ2 WARCA-L rPCCA-χ2 rPCCA-L MLAPG FRML SVMML LFDA-χ2 LFDA-L KISSME

Market-1501 − 75.41±0.00 − − − − − − 60.53±0.00 70.02±0.00
CUHK03 93.94±0.76 89.67±0.80 93.92±0.81 89.17±0.69 82.30±1.01 86.64±0.65 86.64±1.07 91.66±0.68 74.23±1.51 77.68±1.83
CUHK01 84.99±0.65 71.88±0.67 81.00±0.88 67.56±0.93 62.84±1.51 66.39±0.76 65.73±1.07 80.84±0.80 58.92±1.08 62.36±0.95
OpeReid 86.47±1.08 77.17±0.94 85.25±1.16 77.42±1.01 72.34±1.11 76.51±0.88 73.88±1.04 82.67±1.30 68.96±1.53 71.33±1.14
VIPeR 81.87±1.07 67.00±1.11 71.30±1.50 62.40±1.43 64.71±1.15 64.19±1.39 71.04±1.63 81.34±1.21 62.67±1.35 64.74±1.20
PRID450s 72.13±1.49 50.07±2.25 63.10±2.16 46.19±1.89 30.81±2.19 42.97±2.84 59.54±1.25 71.55±1.70 28.18±1.22 53.83±1.86
CAVIAR 85.76±1.48 83.01±1.44 84.41±1.28 76.57±1.29 81.58±1.50 81.88±1.85 79.38±2.19 81.94±2.32 76.76±1.69 78.85±1.54
3DPeS 83.89±1.53 78.07±1.57 82.84±1.44 72.27±1.96 75.98±1.28 76.89±1.44 73.38±1.70 83.49±0.95 75.87±1.49 72.22±1.31
iLIDS 79.04±1.60 73.42±1.96 74.10±2.04 69.60±2.44 72.45±1.99 71.26±1.55 70.25±2.09 78.98±1.43 74.26±2.02 70.33±2.90

All other evaluations where carried out in the single-shot experiment set-
ting [2] and our experimental settings are very similar to the one adopted by
Xiong et al. [8]. Except for Market-1501, we randomly divided all the other
datasets into two subsets such that there are p individuals in the test set. We
created 10 such random splits. In each partition one image of each person was
randomly selected as a probe image, and the rest of the images were used as
gallery images and this was repeated 10 times. The position of the correct
match was processed to generate the CMC curve. We followed the standard
train-validation-test splits for all the other datasets and P was chosen to be
100, 119, 486, 316, 225, 36, 95 and 60 for CUHK03, OpeReid, CUHK01, VIPeR,
PRID450s, CAVIAR, 3DPeS and iLIDS respectively.

We used the same set of features for all the datasets except for the Market-
1501 and all the features are essentially histogram based. First all the datasets
were re-scaled to 128×48 resolution and then 16 bin color histograms on RGB,
YUV, and HSV channels, as well as texture histogram based on Local Binary
Patterns (LBP) were extracted on 6 non-overlapping horizontal patches. All the
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Fig. 1: CMC curves comparing WARCA against state-of-the-art methods on
nine re-identification datasets

histograms are normalized per patch to have unit L1 norm and concatenated
into a single vector of dimension 2,580 [5, 8].

The source codes for LFDA, KISSME and SVMML are available from their
respective authors website, and we used those to reproduce the baseline re-
sults [8]. The code for PCCA is not released publicly. A version from Xiong et al. [8]
is available publicly but the memory footprint of that implementation is very
high making it impossible to use with large datasets (e.g. it requires 17GB of
RAM to run on the CAVIAR dataset). Therefore to reproduce the results in [8]
we wrote our own implementation, which uses 30 times less memory and can
scale to much larger datasets. We also ran sanity checks to make sure that it be-
haves the same as that of the baseline code. All the implementations were done
in Matlab with mex functions for the acceleration of the critical components.

In order to fairly evaluate the algorithms, we set the dimensionality of the
projected space to be same for WARCA, rPCCA and LFDA. For the Market-
1501 dataset the dimensionality used is 200 and for VIPeR it is 100 and all



12 Cijo Jose François Fleuret

the other datasets it is 40. We choose the regularization parameter and the
learning rate through cross-validation across the data splits using grid search
in (λ, η) ∈ {10−8, . . . , 1} × {10−3, . . . , 1}. Margin γ is fixed to 1. Since the size
of the parameter matrix scales in O(D2) for SVMML and KISSME we first
reduced the dimension of the original features using PCA keeping 95% of the
original variance and then applied these algorithms. In our tables and figures
WARCA−χ2, WARCA-L, rPCCA−χ2, rPCCA-L, LFDA−χ2 and LFDA-L de-
note WARCA with χ2 kernel, WARCA with linear kernel, rPCCA with χ2 kernel,
rPCCA with linear kernel, and LFDA with χ2 kernel, LFDA with linear kernel
respectively.

For all experiments with WARCA we used harmonic weighting for the rank
weighting function of Equation 8. We also tried uniform weighting which gave
poor results compared to the harmonic weighting. For all the datasets we used
a mini-batch size of 512 in the SGD algorithm and we ran the SGD for 2000
iterations (A parameter update using the mini-batch is considered as 1 iteration).

Tables 2a and 2b summarize respectively the rank-1 and rank-5 performance
of all the methods, and Table 2c summarizes the Area Under the Curve (AUC)
performance score. Figure 1 reports the CMC curves comparing WARCA against
the baselines on all the nine datasets. The circle and the star markers denote
linear and kernel methods respectively.

WARCA improves over all other methods on all the datasets. On VIPeR,
3DPeS, PRID450s and iLIDS datasets LFDA come very close to the perfor-
mance of WARCA. The reason for this is that these datasets are too small and
consequently simple methods such as LFDA which exploits strong prior assump-
tions on the data distribution work nearly as well as WARCA.

4.3 Comparison against State-of-the-art

We also compare against the state-of-the-art results reported using recent algo-
rithms such as MLAPG on LOMO features [9], MLPOLY [25] and IDEEP [26]
on VIPeR, CUHK01 and CUHK03 datasets. The reason for not including these
comparisons in the main results is because apart from MLAPG the code for other
methods is not available, or the features are different which makes a fair compar-
ison difficult. Our goal is to evaluate experimentally that, given a set of features,
which is the best off-the-shelf metric learning algorithm for re-identification.

In this set of experiments we used the state-of-the-art LOMO features [4]
with WARCA for VIPeR and CUHK01 datasets. The results are summarized in
the Table 3. We improve the rank1 performance by 21% on CUHK03 by 1.40%
on CUHK01 dataset.

Table 3: Comparison of WARCA against state-of-the-art results for person re-
identification
Dataset

WARCA(Ours) MLAPG [9] MLPOLY [25] IDEEP [26]
rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20 rank=1 rank=5 rank=10 rank=20

VIPeR 40.22 68.16 80.70 91.14 40.73 69.94 82.34 92.37 36.80 70.40 83.70 91.70 34.81 63.61 75.63 84.49
CUHK01 65.64 85.34 90.48 95.04 64.24 85.41 90.84 94.92 - - - - 47.53 71.60 80.25 87.45
CUHK03 78.38 94.5 97.52 99.11 57.96 87.09 94.74 98.00 - - - - 54.74 86.50 94.02 97.02
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4.4 Analysis of the AON regularizer

Here we present an empirical analysis of the AON regularizer against the stan-
dard Frobenius norm regularizer. We used the VIPeR dataset with LOMO fea-
tures for the experiments shown in the first row of Figure 2. With very low
regularization strength AON and Frobenius behave the same. As the regulariza-
tion strength increases, Frobenius results in rank deficient mappings (Figure 2a),
which is less discriminant and perform poorly on the test set (Figure 2b). The
AON regularizer on the contrary pushes towards orthonormal mappings, and
results in an embedding well conditioned, which generalizes well to the test set.
It is also worth noting that training with the AON regularizer is robust over a
wide range of the regularization parameter, which is not the case the Frobenius
norm. Finally, the AON regularizer was found to be very robust to the choice of
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Fig. 2: Comparison of the Approximate OrthoNormal (AON) regularizer we use
in our algorithm to the standard Frobenius norm (L2) regularizer. Graph (a)
shows the condition number (ratio between the two extreme eigenvalues of the
learned mapping) vs. the weight λ of the regularization term. As expected, the
AON regularizer pushes this value to one, as it eventually forces the learning to
chose an orthonormal transformation, while the Frobenius regularizer eventually
kills the smallest eigenvalues to zero, making the ratio extremely large. Graph
(b) shows the Rank-1 performance vs. the regularizer weight λ, graph (c) the
Rank-1 performance vs. the SGD step size η, graph (d) CMC curve with the two
regularizers and finally graph (e) shows the Rank-1 performance on different
datasets

the SGD step size η (Figure 2c) which is a crucial parameter in large-scale learn-
ing. A similar behavior was observed by Lim et al. [10] with their orthonormal
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Riemannian gradient update step in the SGD but it is computationally expen-
sive and not trivial to use with modern SGD algorithms such as Adam [31], and
Nesterov’s momentum [35].

4.5 Analysis of the Training Time
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Fig. 3: WARCA performs significantly better than the state-of-the-art rPCCA
on large datasets for a given training time budget

Figure 3 illustrates how the performance in test of WARCA and rPCCA
increase as a function of training time on 3 datasets. We implemented both
the algorithms entirely in C++ to have a fair comparison of running times. In
this set of experiments we used 730 test identities for CUHK03 dataset to have
a quick evaluation. Experiments with other datasets follow the same protocol
described above. Please note that we do not include spectral methods in this plot
because the solutions are found analytically. Linear spectral methods are very
fast for low dimensional problems but the training time scales quadratically in
the data dimension. In case of kernel spectral methods the training time scales
quadratically in the number of data points. We also do not include iterative
methods MLAPG and SVMML because they proved to be very slow and not
giving good performance.

5 Conclusion

We have proposed a simple and scalable approach to metric learning that com-
bines a new and simple regularizer to a proxy for a weighted sum of the precision
at different ranks. The later can be used for any weighting of the precision-at-k
metrics. Experimental results show that it outperforms state-of-the-art methods
on standard person re-identification datasets, and that contrary to most of the
current state-of-the-art methods, it allows for large-scale learning.
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