
Multi-Layer Boosting for Pattern Recognition

François Fleuret

IDIAP Research Institute,
Centre du Parc,
P.O. Box 592
1920 Martigny,

Switzerland
fleuret@idiap.ch

Abstract

We extend the standard boosting procedure to train a two-layer classifier ded-
icated to handwritten character recognition. The scheme we propose relies on a
hidden layer which extracts feature vectors on a fixed number of points of interest,
and an output layer which combines those feature vectors and the point of interest
locations into a final classification decision.

Our main contribution is to show that the classical AdaBoost procedure can be
extended to train such a multi-layered structure by propagating the error through
the output layer. Such an extension allows for the selection of optimal weak learners
by minimizing a weighted error, in both the output layer and the hidden layer. We
provide experimental results on the MNIST database and compare to a classical
unsupervised EM-based feature extraction.

Key words: boosting, multi-layer perceptron, functional gradient descent,
convolutional network.

1 Introduction

Most of the efficient image classification methods combine two levels of mod-
elling. At a lower level, feature extraction recodes the input so that local
appearance of the image is captured with invariance to translation. At an
upper level the features captured locally are combined with a global configu-
ration model. These two steps are present in a form or another in two-layer
convolutional networks [9,3], certain decision trees for digit recognition [1],
constellations [8,4] or Bayesian models.
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We propose in this paper to extend boosting to train the two levels of such a
model jointly. Since boosting can be seen as a functional gradient descent, it
can be naturally extended to train a multi-layer classifier, each layer of which
being a linear combination of simple functionals taking as input the responses
of the functionals from the previous layer. This is similar to the extension of
gradient descent from a one-layer to a multi-layer perceptron.

The classifier we describe in this paper to illustrate this idea is composed of
three stages. The first one is ad hoc and tags points of interest in the image.
The second extracts at each of these points a feature vector which is a function
of its neighborhood in the image. The third layer combines both the point
of interest locations and the feature vectors to obtain a final response. The
functionals doing the feature extraction and the functionals doing the final
decision are linear combinations of simple weak learners, selected iteratively
in a boosting-like manner to minimize an empirical weighted error rate.

2 Multi-Layer Boosting

2.1 Classical AdaBoost

Boosting [2] was proposed initially as a way to improve the power of a family of
classifiers by combining a few of them linearly. The usual way to understand it
intuitively is as a technique to increasingly put the emphasis on problematic
training examples, so that classifiers built successively are more and more
dedicated to challenging samples, thus reducing the global error rate. However,
boosting can also be seen as a functional gradient descent where the resulting
mapping is obtained by constructing iteratively a linear combination of simple
functionals to reduce a loss in a greedy fashion.

Precisely, let X denote the signal space and

- {(x1, y1), . . . , (xN , yN)} ∈ (X × {−1,+1})N a training set,
- g̃1, . . . , g̃B,∀b, g̃b : X → {−1, 1} a set of weak learners,
- ∀t ≤ T, gt =

∑t
s=1 βs g̃bs the mapping obtained after t steps of boosting.

The role of the AdaBoost procedure is to select the sequence of indexes
b1, . . . , bT and weights β1, . . . , βT so that the sign of gT (xn) is a good pre-
dictor of the class yn. As said above, it can be seen as a functional gradient
descent [6]: each added weighted weak learner is as a small step in the vector
space of functionals, chosen so that an exponential loss L is minimized.

More precisely at any step, given the functional gt : X → R built so far and
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an exponential loss function L(g) =
∑

n exp(−yn g(xn)), the algorithm chooses
the weak learner g̃b(t+1) maximizing

∣∣∣∣∣∣
∂ L(gt + β g̃)

∂ β

∣∣∣∣∣
β=0

∣∣∣∣∣∣
=

∣∣∣∣∣
∑
n

− yn g̃(xn) exp(−yn gt(xn))

∣∣∣∣∣

which corresponds to choosing the direction minimizing the loss the most
locally. Given that weak learner, βt+1 is uniquely defined as

βt+1 = arg min
β

L(gt + β g̃b(t+1))

which corresponds to the line search in gradient descent, and has an analytical
form in the case of the exponential loss we consider here.

Thus, this is a functional generalization of the usual gradient descent. The only
restriction is that not all directions in the space of functions are available, but
only the ones corresponding to the weak learners.

2.2 Extension to compositions of mappings

We consider now a slightly more complex situation where the classification rule
is a composition of sums of weak-learners. In this settings, a first combination
of weak learners maps the input space X into RQ, and a second combination
of weak learners maps RQ into {−1, 1}.

We introduce the following

- {(x1, y1), . . . , (xN , yN)} ∈ (X × {−1,+1})N a training set,
- f̃1, . . . , f̃A, ∀a, f̃a : X → {−1, 1}Q a set of weak learners for the intermediate

recoding,
- ∀t ≤ T, ft =

∑t
s=1 αsf̃as the mapping for the intermediate recoding built

after t steps of boosting,
- g̃1, . . . , g̃B,∀b, g̃b : X ×RQ → {−1, 1} a set of weak learners for the output

mapping,
- ∀t ≤ T, gt =

∑
s≤t βsg̃bs the output mapping built after t steps of boosting.

Thus, when the training is over, given a signal x, the predicted class corre-
sponds to the sign of gT (x, fT (x)). We can transpose directly the AdaBoost
training rule presented above, which leads to choose the at, αt, bt and βt+1 to
minimize

L(gt, ft) =
∑
n

exp(−yn gt(xn, ft(xn)))
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the choice of bt+1 is done with a strict AdaBoost rule, that is by choosing for
g̃t+1 the g̃ minimizing

∂ L(gt + β g̃, ft)

∂ β

∣∣∣∣∣
β=0

=
∑
n

−yn g̃(xn, ft(xn)) exp(−yn gt(xn, ft(xn)))

which is a weighted error rate of g̃. The choice of βt is obtained by line mini-
mization which has a closed form, as usual.

The choice of at+1 is however slightly more complex. We again apply the
minimization of the local derivative, that is we want to pick for f̃at+1 the f̃
minimizing

∂ L(gt, ft + αf̃)

∂ α

∣∣∣∣∣
α=0

=
∑
n

∂ exp(−yn gt(xn, ft(xn) + αf̃(xn)))

∂ α

∣∣∣∣∣
α=0

=
∑
n

−yn
∂ gt(xn, ft(xn) + αf̃(xn))

∂ α

∣∣∣∣∣
α=0

exp(−yn gt(xn, ft(xn)))

=
∑
n

∑
q

−yn f̃
q(xn)∇qgt(xn, ft(xn)) exp(−yn gt(xn, ft(xn)))

where f̃ q denotes the q-th component of f̃ , and ∇qgt(x) the q-th component of
the gradient of g̃ in x. Hence, the choice of the weak learners for the intermedi-
ate recoding is also the minimization of a weighted error. The coefficient αt+1

is chosen with a line-search, which has to be done numerically with a standard
bracketing procedure, since no analytical form can be derived anymore.

3 Application to character recognition

3.1 Recognition

Our predictor is very close in spirit to a convolutional multi-layer perceptron
[9,3] and consists of a hidden layer extracting the local appearance of the
pattern to classify at a few points selected by a difference-of-Gaussians oper-
ator [5], and of a second layer combining these local prediction with global
geometrical properties to obtain a classification.

More precisely, as described on Figure 1, given an image of size 32 × 32, the
algorithm is:
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Fig. 1. The classification is composed of three steps: (1) on the input image I a fixed
number K of points of interest (u1, v1), . . . , (uK , vK) are tagged on the maxima of a
difference of Gaussians, (2) a feature vector of size D is computed for each of these
points of interest, as a function of the ∆×∆ neighborhood of each points, resulting
in a vector f(I) of dimension D K, (3) one response gc is computed for each of the
C classes as a function of both the locations of the points of interest and the feature
vectors.

(1) Select in the 32× 32 images a small number K (= 10) of point using the
difference of Gaussians maximization criterion [5]. Let

(u1, v1), . . . , (uK , vK) ∈ {0, . . . , 31}2K

denote their coordinates and x the pair composed of the image itself and
the coordinates of these points.

(2) For every selected point k, extract a subimage I(uk, vk) of resolution
∆×∆ (with ∆ = 11) centered on (uk, vk) and compute a feature vector
(ψ1(I(uk, vk)), . . . , ψD(I(uk, vk))) with D = 32, and where the ψd are
linear combinations of thresholded Haar wavelets.

At the end of that step, the image has been recoded into a list of K
points, each one being characterized by its two coordinates (uk, vk) in the
image plane and a vector of D features. Let f(x) denote the resulting
vector of dimension DK.

(3) Compute as many scores as there are classes

(g1(x, f(x)), . . . , gC(x, f(x)))

and apply a winner-take-all rule to make a hard decision.
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3.2 Training

The training algorithm consists of building iteratively and jointly the ψd as
sums of thresholded Haar wavelets [7] and the g1, . . . , gC as sums of smooth
disjunctions of the ψd. To fit this algorithm in the framework described in
§ 2.2, we consider the signal x to be both the input image in gray levels
and the coordinates of the points of interest (u1, v1), . . . , (uK , vK), thus X =
[0, 1]32×32 × {0, . . . , 31}2K

The number of intermediate features is Q = DK, that is as many as the
number of features per point of interest, time the number of points of interest.
Thus, the resulting mapping fT we wish to obtain at the end of the training
has the following form

fT (x) =
ψ1(I(u1, v1)), . . . , ψD(I(u1, v1))︸ ︷︷ ︸

D features on (u1,v1)

, ψ1(I(u2, v2)), . . . , ψD(I(u2, v2))︸ ︷︷ ︸
D features on (u2,v2)

, . . .




and a weak learner f̃ is defined by an index d (corresponding to the ψd we are
implicitely modifying), a Haar wavelet h and a threshold τ , and is equal to

f̃(x) =
0, . . . , 0, σ(h(I(u1, v1))−τ), 0, . . . , 0︸ ︷︷ ︸

D features on (u1,v1)

, 0, . . . , 0, σ(h(I(u2, v2))−τ), 0, . . . , 0︸ ︷︷ ︸
D features on (u2,v2)

, . . .




where σ is the heavyside function equal to −1 on R− and +1 on R+.

Every weak learner g̃ is defined by an index d and a rectangular area R and
is a smooth maximum of the responses of ψd on the points (uk, vk) localized
in R:

g̃(I) = 1 − 2



1 +

∑

(uk,vk)∈R
exp (ψd(I(uk, vk)))





−1

.

Such an expression varies between −1 and 1 and roughly increases with the
maximum over the value of ψd on points contained in the rectangle R.

We initially break the symmetry between features by populating all the ψd

with one wavelet picked at random. The training is done by applying the
generalized AdaBoost procedure described in §2.2, with the optimization per-
formed at each iteration by sampling at random 1, 000 weak learners and
keeping the optimal one according to the current weightings.
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In the following, we introduce ξc
t = gc(xt) and ζd

t,k = ψd (It(u
t
k, v

t
k)). Also, for

the sake of clarity L denotes either the loss as a function of the responses in
the hidden layer or in the output layer.

One learning step can be summarized as follow:

∀t, c, ξ̇c
t ← ∂L

∂ξc
t

∀t, k, d, ζ̇d
t,k ← ∂L

∂ζd
t,k

=
∑

c
∂L
∂ξc

t

∂ξc
t

∂ζd
t,k

for d = 1 . . . D do
(h∗, τ ∗)← arg maxh,τ

∣∣∣∑t,k ζ̇
d
t,k σ(h(It(u

t
k, v

t
k))− τ)

∣∣∣
α∗ ← arg minα L(ψ1, . . . , ψd + ασ(h∗ − τ), . . . , ψD)
ψd ← ψd + α∗ σ(h∗ − τ)

end for
for c = 1 . . . C do
g̃∗ ← arg maxg̃

∣∣∣∑t,k ξ̇
c
t g̃(xt)

∣∣∣
β∗ ← arg minβ L(g1, . . . , gc + β g̃∗, . . . , gC)
gc ← gc + β∗ g̃∗

end for

4 Results

We compare the performance of such a multi-layer boosting approach to a
more classical unsupervised clustering to select the features. Also, we study
the influence of the number of wavelets in the feature coding on the final
performance of the classifier both in term of exponential loss reduction during
training and in term of test error rates.

4.1 Baseline method

To measure the improvement of performance due to the joint learning, we
use for baseline a very similar two-layer classifier. As for our approach, the
hidden layer is composed of D feature extractors, the responses of which are
combined into the output layer through disjunctions over rectangular areas.
The training algorithm for that output layer is the same as for our approach,
and boils down to a classical AdaBoost procedure (see the choice of the bt and
βt coefficients in §2.2, page 3).

However, the hidden layer for this baseline is trained in a non-supervised
manner. This is done by fitting a mixture of Gaussian densities to the training
data with a standard EM procedure, hence learning a family of D centroids.
By taking into account the variance of classes, such a procedure is slightly
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more accurate than k-mean, used with success for building such code-books
of patches [8].

Hence, we first build a training set containing all the ∆×∆ images centered on
the points of interest in the training images. We initialize the EM procedure
by picking D samples in this set as the initial class sample averages, and
associating each sample of the complete set to the cluster of closest average.
From this initialization we apply the classical EM updating rule for mixtures of
Gaussians: The expectation and variance of each cluster and the probability
of each sample to belong to each class are estimated alternatively. To deal
with the high dimension of the space we force the covariance matrix to be
proportional to the identity. Figure 5 (a) shows for 10 classes the 10 samples
responding the most.

Given an image I of resolution ∆ × ∆, we can compute a feature vector of
dimension D by first computing the distances to the D centroids chosen with
the learning procedure described above, and then by thresholding each of these
D distance. The choice of thresholds that gave the best results on the test set
was the median of each distance on the training examples. Hence, during test
there are always roughly half of the features below threshold and half of the
feature above threshold.

This baseline has all the strengths of the new method we propose except that
it lacks the joint training of the hidden layer: The features encoded in the
hidden layer are here trained separately in a non-supervised way.

4.2 Influence of the number of wavelets on the training error

Our first series of experiments tests the performance of the classifier trained
with N = 10, 000 samples, with T = 100 weak learners for each class in the
output layer and various numbers of wavelets in the hidden layer.

Figure 2 shows the evolution of the exponential loss as a function of the number
of weak learners in the output layer, and Figure 3 as a function of the number
of wavelets in the hidden layer, for a fixed number of weak learners in the
output layer.

Since we equalize the number of clusters between the baseline and the multi-
layer boosting, there are no equivalent “capacity parameter” for the former
similar to the number of wavelets for the latter. Hence results are always
computed after convergence of EM for the baseline.

As expected, the more wavelets in the hidden layer, the more the loss is re-
duced. Interestingly, 10 wavelets already outperforms the unsupervised EM
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Fig. 2. Exponential loss as a function of the total number of weak learners in the
output layer when the wavelets in the hidden layer are added from the first step of
learning.

clustering and as shown on Figure 4 the test error rate does not improve when
adding more than 50 wavelets.

4.3 Testing error rates

Finally, to compare this approach to the state of the art, we have computed
the test error rate with the classifiers used in the experiments presented above,
which is built with only 10, 000 samples and 100 weak learners in each of the
C functional of the output layers, and also with a classifier trained with the
full MNIST database (60, 000 samples) which combines 1, 000 weak learners
in the output layer and 50 wavelets per feature in the hidden layer.

In both case, we improve the classification by trying 3 different rotations in
the image plane (− π

20
, 0 and + π

20
) to account for the tilt of the character

and averaging the responses of the output layer over the three rounds. The
error rates of the classifiers combining only 100 weak learners are given vs.
the number of features on Figure 4. The error rate with the classifier trained
on the full MNIST database is 1.48% with optimization of the tilt and 1.87%
without.
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Fig. 3. Exponential loss during training as a function of the number of Haar wavelets
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error rate of 1.48% with 1, 000 weak learners in the output layer, 50 wavelets in the
hidden layer and tilt optimization (1.87% without).

5 Conclusion

We have demonstrated how boosting can be extended to a multi-layer setting.
The output functionals are trained with a classical AdaBoost while the inner
layer is trained by first propagating the derivative of the loss function through
the output layer and then using an AdaBoost-like procedure.

Such an architecture is very close to a multi-layer perceptron. Still, it retains all
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(a) (b)

Fig. 5. These figure show for each of the D = 32 feature component the eight ∆×∆
subimages with the highest score. Figure (a) corresponds to the EM clustering and
(b) to the multi-layer boosting with 100 wavelets. As observed for multi-layer percep-
trons, the features obtained by supervised learning are less consistent geometrically
than those learnt by unsupervised learning.

the good properties of boosting, mainly the ability to combine heterogeneous
weak learners into a unified scheme. Compared to a MLP, the price to pay
is computational: since the constructed classifiers do not live anymore in Rn

as MLPs do, the computational cost increases with the number of combined
weak learners.

The computational cost for test is not too high and remains linear with the
number of weak learners, as usual for boosted classifiers. That is O(N1 +N2)
where N1 is the number of weak learners in the hidden layer and N2 the
number of weak learners in the output layer. On the contrary, the asymptotic
training cost increases: since the responses of the output layer weak learners
change when the hidden layer is modified, they have to be recomputed at
each learning step. Finally, if all the weak learners in the hidden layer are
added from the first step, the learning cost turns to be O(N2

1 +N2). However
experiments showed that a few tens of features in the ψds are sufficient to reach
the maximum performance (see Figure 4), which means that this asymptotic
cost is not a real issue.

This study demonstrates that multi-layer boosting is doable and provides the
expected improvement due to learning jointly the local and the global model
of the patterns to classify. Our future work will be focused on refining the
weak learners combined in the output layer to imbed invariance to translation
or local deformations at reasonable cost.
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