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Abstract

We investigate the learning of the appearance of an object from a single
image of it. Instead of using a large number of pictures of theobject to
recognize, we use a labeled reference database of pictures of other ob-
jects to learn invariance to noise and variations in pose andillumination.
This acquired knowledge is then used to predict if two pictures of new
objects, which do not appear on the training pictures, actually display the
same object.
We propose a generic scheme calledchoppingto address this task. It
relies on hundreds of random binary splits of the training set chosen to
keep together the images of any given object. Those splits are extended
to the complete image space with a simple learning algorithm. Given
two images, the responses of the split predictors are combined with a
Bayesian rule into a posterior probability of similarity.
Experiments with the COIL-100 database and with a database of 150 de-
graded LATEX symbols compare our method to a classical learning with
several examples of the positive class and to a direct learning of the sim-
ilarity.

1 Introduction

Pattern recognition has so far mainly focused on the following task: given many training
examples labelled with their classes (the object they display), guess the class of a new sam-
ple which was not available during training. The various approaches all consist of going
to some invariant feature space, and there using a classification method such as neural net-
works, decision trees, kernel techniques, Bayesian estimations based on parametric density
models, etc. Providing a large number of examples results ingood statistical estimates of
the model parameters. Although such approaches have been successful in applications to
many problems, their performance are still far from what biological visual systems can do,
which isone sample learning. This can be defined as the ability, given one picture of an
object, to spot instances of the same object, under the assumption that these new views can
be induced by the single available example.
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Being able to perform that type of one-sample learning corresponds to the ability, given
one example, to sort out which elements of a test set are of thesame class (i.e. one class
vs. the rest of the world). This can be done by comparing one byone all the elements of
the test set with the reference example, and labelling as of the same class those which are
similar enough. Learning techniques can be used to choose the similarity measure, which
could be adaptive and learned from a large number of examplesof classes not involved in
the test.

Thus, given a large number of training images of a large number of objects labeled with
their actual classes, and provided two pictures of unknown objects (objects whichdo not
appear in the training pictures), we want to decide if these two objects are actually the
same object. The first image of such a couple can be seen as a single training example, and
the second image as a test example. Averaging the error rate by repeating that test several
times provides with an estimate of a one-sample learning (OSL) error rate.

The idea of “learning how to learn” is not new and has been applied in various settings [12].
Taking into account and/or learning relevant geometric invariances for a given task has been
studied under various forms [1, 8, 11], and in [7] with the goal to achieve learning from very
few examples. Finally, the precise one-sample learning setting considered here has been
the object of recent research [4, 3, 5] proposing different methods (hyperfeature learning,
distance learning) for finding invariant features from a setof training reference objects
distinct from the test objects. This principle has also beendubbedinterclass transfer.

The present study proposes a generic approach, and avoids anexplicit description of the
space of deformations. We propose to build a large number of binary splits of the image
space, designed to assign the same binary label to all the images common to a same object.
The binary mapping associated to such a split is thus highly invariant across the images
of a certain object while highly variant across images of different objects. We can define
such a split on the training images, and train a predictor to extend it to the complete image
space by induction. We expect the predictor to respond similarly on two images of a same
object, and differently on two images of two different objects with probability 1

2
. The

global criterion to compare two images consists roughly of counting how many such split-
predictors responds similarly and compare the result to a fixed threshold.

The principle of transforming a multiclass learning problem into several binary ones by
class grouping has a long history in Machine Learning [10]. From this point of view the
collected output of several binary classifiers is used as a way for coding class membership.
In [2] it was proposed to carefully choose the class groupings so as to yield optimal sep-
aration of codewords (ECOC methodology). While our method isrelated to this general
principle, our goal is different since we are interested in recognizing yet-unseen objects.
Hence, the goal is not to code multiclass membership; our focus is not on designing effi-
cient codes – splits are chosen randomly and we take a large number of them – but rather
on how to use the learned mappings for learning unknown objects.

2 Data and features

To make the rest of the paper clearer to the reader, we now introduce the data and feature
sets we are using for our proof of concept experiments. However, note that while we have
focused on image classification, our approach is generic andcould be applied to any signals
for which adaptive binary classifiers are available.

2.1 Data

We use two databases of pictures for our experiments. The first one is the standard COIL-
100 database of pictures [9]. It contains7200 images corresponding to100 different objects



Figure 1: Four objects from the100 objects of the COIL-100 database (downsampled to
38 × 38 grayscale pixels) and four symbols from the150 symbols of our LATEX symbol
database (A, Φ, ⋖ and⋔, resolution28 × 28). Each image of the later is generated by
applying a rotation and a scaling, and by adding lines of random grayscales at random
locations and orientations.
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(x,y)

Figure 2: The figure on the left shows how an horizontal edgeξx,y,4 is detected: the six
differences between pixels connected by a thin segment haveto be all smaller in absolute
value than the difference between the pixels connected by the thick segment. The relative
values of the two pixels connected by the thick segment definethe polarity of the edge
(dark to light or light to dark). On the right are shown the eight different types of edges.

seen from72 angles of view. We down-sample these images from their original resolution
to 38× 38 pixels, and convert them to grayscale. Examples are given infigure 1 (left). The
second database contains images of150 LATEX symbols. We generated1, 000 images of
each symbol by applying a random rotation (angle is taken between−20 and+20 degrees)
and a random scaling factor (up to1.25). Noise is then added by adding random line
segments of various gray scales, locations and orientations. The final resulting database
contains150, 000 images. Examples of these degraded images are given in figure1 (right).

2.2 Features

All the classification processes in the rest of the paper are based on edge-based boolean
features. Letξx,y,d denote a basic edge detector indexed by a location(x, y) in the image
frame and an orientationd which can take eight different values, corresponding to four
orientations and two polarities (see figure 2). Such an edge detector is equal to1 if and
only if an edge of the given location is detected at the specified location, and0 otherwise.
A featurefx0,y0,x1,y1,d is a disjunction of theξ’s in the rectangle defined byx0, y0, x1, y1.
Thus, it is equal to one if and only if∃x, y, x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, ξx,y,d = 1. For
pictures of size32 × 32 there is a total ofN = 1

4
(32 × 32)2 × 8 ≃ 2.106 features.
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Figure 3: These two histograms are representative of the responses of two split predictors
conditionally to the real arbitrary labellingP (L |S).

3 Chopping

The main idea we propose in this paper consists of learning a large number of binary splits
of the image space which would ideally assign the same binarylabel to all the images of
any given object. In this section we define these splits and describe and justify how they
are combined into a global rule.

3.1 Splits

A split is a binary labelling of the image space, with the property to give the same label
to all images of a given object. We can trivially produce a labelling with that property on
the training examples, but we need to be able to extend it to images not appearing in the
training data, including images of other objects. We suppose that it is possible to infer a
relevant split function on the complete image space, including images of other objects by
looking at the problem as a binary classification problem. Inference is done by the mean
of a simple learning scheme: a combination of a fast feature selection based on conditional
mutual information (CMIM) [6] and a linear perceptron.

Thus, we createM arbitrary splits on the training sample by randomly assigning the la-
bel 1 to half of theNT objects appearing in the training set, and0 to the others. Since
there are

(

NT

NT /2

)

such balanced arbitrary labellings, withNT of the order of a few tens, a
very large number of splits is available and only a small subset of them will be actually
used for learning. For each one of those splits, we train a predictor using the scheme de-
scribed above. Let(S1, . . . , SM ) denote the family of arbitrary splits and(L1, . . . , LM )
the split-predictors. The continuous outputs of these predictors before thresholding will be
combined in the final classification.

3.2 Combining splits

To combine the responses of the various split predictors, werely on a set of simple condi-
tional independence assumptions (comparable to the “naiveBayes” setting) on the distribu-
tion of the true class labelC (each class corresponds to an object), the split labels(Si) and
the predictor outputs(Li) for a single image. We do not assume that for test image pairs
(I1, I2) the two images are independent, because we want to encompassthe case where
pairs of images of the same object are much more frequent thanthey would be if they were
independent (typically in our test data we have arranged to have50% of test pairs picturing
the same object). We however still need someconditional independence assumption for
the drawing of test image pairs. To simplify the notation we denoteL1 = (L1

i ), L
2 = (L2

i )
the collection of predictor outputs for images 1 and 2,S1 = (S1

i ), S2 = (S2

i ) the col-
lection of their split labels andC1, C2 their true classes. The conditional indepence



assumptions we make are summed up in the following Markov dependency diagram:
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In words, for each spliti, the predictor outputLi is assumed to be independent of the true
classC conditionally to the split labelSi; and conditionally to the split labels(S1, S2) of
both images, the outputs of predictors on test pair images are assumed to be independent.

Finally, we make the additional symmetry hypothesis that conditionally toC1 = C2, for all
i : S1

i = S2

i = Si and(Si) are independent Bernoulli variables with parameter0.5, while
conditionally toC1 6= C2 all split labels(S1

i , S2

i ) are independent Bernoulli(0.5).

Under these assumptions we then want to compute the log-oddsratio

log
P (C1 = C2 |L

1, L2)

P (C1 6= C2 |L1, L2)
= log

P (L1, L2 |C1 = C2)

P (L1, L2 |C1 6= C2)
+ log

P (C1 = C2)

P (C1 6= C2)
. (1)

In this formula and the next ones, when handling real-valuedvariablesL1, L2 we are im-
plicitly assuming that they have a density with respect to the Lebesgue measure and prob-
abilities are to be interpreted as densities with some abuseof notation. We assume that the
second term above is either known or can be reliably estimated. For the first term, under
the aforementioned independence assumptions, the following holds (see appendix):

log
P (L1, L2 |C1 = C2)

P (L1, L2 |C1 6= C2)
= N log 2 +

∑

i

log
(

α1

i α
2

i + (1 − α1

i )(1 − α2

i )
)

, (2)

whereα
j
i = P (Sj

i = 1 |Lj
i ). As a quick check, note that if the predictor outputs(Li) are

uninformative (i.e. every probabilityαj
i is 0.5), then the above formula gives a ratio of 1

which is what we expect. If they are perfectly informative (i.e. allαj
i are 0 or 1), the odds

ratio can take the values 0 (if for somej we can ensureS1

j 6= S2

j , this excludes the case
C1 = C2) or 2N (if for all j we haveS1

j = S2

j there is still a tiny chance thatC1 6= C2 if
by chanceC1, C2 are on the same side of each split).

To estimate the probabilitiesP (Sj |Lj), we use a simple 1D Gaussian model for the output
of the predictor given the true split label. Mean and variance are estimated from the training
set for each predictor. Experimental findings show that thisGaussian modelling is realistic
(see figure 3).

4 Experiments

We estimate the performance of the chopping approach by comparing it to classical learning
with several examples of the positive class and to a direct learning of the similarity of two
objects on different images. For every experiment, we use a family of 10, 000 features
sampled uniformly in the complete set of features (see section 2.2)

4.1 Multiple example learning

In this procedure, we train a predictor with several pictures of a positive class and with
a very large number of pictures of a negative class. The number of positive examples
depends on the experiments (from1 to 32) and the number of negative examples is2, 000
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Figure 4: Error rates of the chopping, smart-chopping (see§4.2), multi-example learning
and learnt similarity on the LATEX symbol (left) and the COIL-100 database (right). Each
curve shows the average error and a two standard deviation interval, both estimated on ten
experiments for each setting. Thex-axis shows either the number of splits for chopping or
the number of samples of the positive class for the multi-example learning.

for both the COIL-100 and the LATEX symbol databases. Note that to handle the unbalanced
positive and negative populations, the perceptron bias is chosen to minimize a balanced
error rate. In each case, and for each number of positive samples, we run10 experiments.
Each experiment consists of several cross-validation cycles so that the total number of test
pictures is roughly the same as the number of pairs in one-sample techniques experiments
below.

4.2 One-sample learning

For each experiment, whatever the predictor is, we first select 80 training objects from the
COIL-100 database (respectively100 symbols from the LATEX symbol database). The test
error is computed with500 pairs of images of the20 unseen objects for the COIL-100, and
1, 000 pairs of images of the50 unseen objects for the LATEX symbols. These test sets are
built to have as many pairs of images of the same object than pairs of images of different
objects.

Learnt similarity: Note that one-sample learning can also be simply cast as a standard
binary classification problem of pairs of images into the classes{same, different}. We
therefore want to compare the Chopping method to a more standard learning method di-
rectly on pairs of images using a comparable set of features.For every single featuref
on single images, we consider three features of a pair of images standing for the conjunc-
tion, disjunction and equality of the feature responses on the two images. From the10, 000
features on single images, we thus create a set of30, 000 features on pairs of images.

We generate a training set of2, 000 pairs of pictures for the experiments with the COIL-
100 database and5, 000 for the LATEX symbols, half picturing the same object twice, half
picturing two different objects. We then train a predictor similar to those used for the
splits in the chopping scheme: feature selection with CMIM,and linear combination with
a perceptron (see section 3.1), using the30, 000 features described above.

Chopping: The performance of the chopping approach is estimated for several numbers
of splits (from1 to 1024). For each split we select50 objects from the training objects, and
select at random1, 000 training images of these objects. We generate an arbitrary balanced
binary labelling of these50 objects and label the training images accordingly. We then



build a predictor by selecting2, 000 features with the CMIM algorithm, and combine them
with a perceptron (see section 3.1).

To compensate for the limitation of our conditional independence assumptions we allow to
add a fixed bias to the log-odds ratio (1). This type of correction is common when using
naive-Bayes type assumptions. Using the remaining training objects as validation set, we
compute this bias so as to minimize the validation error. We insist that no objects of the
test classes be used for training.

To improve the performance of the splits, we also test a “smart” version of the chopping
for which each split is built in two steps. The first step is similar to what is described
above. From that first step, we remove the10 objects for which the labelling prediction
has the highest error rate, and re-build the split with the40 remaining objects. This get
rid of problematic objects or inconsistent labelling (for instance trying to force two similar
objects to be in different halves of the split).

4.3 Results

The experiments demonstrate the good performance of chopping when only one example
is available. Its optimal error rate, obtained for the largest number of splits, is7.41%
on the LATEX symbol database and11.42% on the COIL-100 database. By contrast, a
direct learning of the similarity (see section 4.2), reaches respectively15.54% and18.1%
respectively with8, 192 features.

On both databases, the classical multi-sample learning scheme requires32 samples to reach
the same level of performances (10.51% on the COIL-100 and10.7% on the LATEX sym-
bols).

The error curves (see figure 4) are all monotonic. There is no overfitting when the num-
ber of splits increases, which is consistent with the absence of global learning: splits are
combined with an ad-hoc Bayesian rule, without optimizing aglobal functional, which
generally also results in better robustness.

The smart splits (see section 4.2) achieve better performance initially but eventually reach
the same error rates as the standard splits. There is no visible degradation of the asymptotic
performance due to either a reduced independence between splits or a diminution of their
separation power. However the computational cost is twice as high, since every predictor
has to be built twice.

5 Conclusion

In this paper we have proposed an original approach to learning the appearance of an object
from a single image. Our method relies on a large number of individual splits of the image
space designed to keep together the images of any of the training objects. These splits
are learned from a training set of examples and combined intoa Bayesian framework to
estimate the posterior probability for two images to show the same object.

This approach is very generic since it never makes the space of admissible perturbations
explicit and relies on the generalization properties of thefamily of predictors. It can be
applied to predict the similarity of two signals as soon as a family of binary predictors
exists on the space of individual signals.

Since the learning is decomposed into the training of several splits independently, it can
be easily parallelized. Also, because the combination ruleis symmetric with respect to the
splits, the learning can be incremental: splits can be addedto the global rule progressively
when they become available.



Appendix: Proof of formula (2). For the first factor, we have

P (L1, L2 |C1 = C2)

=
∑

s1,s2

P (L1, L2 |C1 = C2, S
1 = s1, S2 = s2)P (S1 = s1, S2 = s2 |C1 = C2)

=
∑

s1,s2

P (L1, L2 |S1 = s1, S2 = s2)P (S1 = s1, S2 = s2 |C1 = C2)

=
∑

s1,s2

∏

i

P (L1

i |S
1

i = s1

i )P (L2

i |S
2

i = s2

i )P ((S1

i , S2

i ) = (s1

i , s
2
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= 2−N
∏

i

(

P (L1

i |S
1

i = 1)P (L2

i |S
2

i = 1) + P (L1

i |S
1

i = 0)P (L2

i |S
2

i = 0)
)

.

In the second equality, we have used thatL is independent ofC given S. In the third
equality, we have used that the(Lj

i ) are independent givenS. In the last equality, we have
used the symmetry assumption on the distribution of(S1, S2) givenC1 = C2. Similarly,

P (L1, L2 |C1 6= C2) = 4−N
∏

i

∑

s1,s2

P (L1

i |S
1

i = s1)P (L2

i |S
2

i = s2)

= 4−N
∏

i

P (L1

i )P (L2

i )
∑

s1,s2

P (S1

i = s1 |L
1

i )P (S2

i = s2 |L
2

i )

P (S1

i = s1)P (S2

i = s2)

= 4−2N
∏

i

P (L1

i )P (L2

i ) ,

sinceP (Sj
i = s) ≡ 1

2
by the symmetry hypothesis. Taking the ratio of the two factors and

using the latter property again leads to the conclusion.
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