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Abstract

We investigate the learning of the appearance of an objewt & single
image of it. Instead of using a large number of pictures ofabgect to
recognize, we use a labeled reference database of pictiioéser ob-
jects to learn invariance to noise and variations in poselamdination.
This acquired knowledge is then used to predict if two piesuof new
objects, which do not appear on the training pictures, dgtdesplay the
same object.

We propose a generic scheme caltdobppingto address this task. It
relies on hundreds of random binary splits of the trainingcb@sen to
keep together the images of any given object. Those spétexended
to the complete image space with a simple learning algoriti@iven
two images, the responses of the split predictors are cadbivith a
Bayesian rule into a posterior probability of similarity.

Experiments with the COIL-100 database and with a databiak&ale-
graded ATpX symbols compare our method to a classical learning with
several examples of the positive class and to a direct leguafithe sim-
ilarity.

1 Introduction

Pattern recognition has so far mainly focused on the follgwiask: given many training
examples labelled with their classes (the object they digpfuess the class of a new sam-
ple which was not available during training. The variousrapphes all consist of going
to some invariant feature space, and there using a clasisificaethod such as neural net-
works, decision trees, kernel techniques, Bayesian efitinssbased on parametric density
models, etc. Providing a large number of examples resuliead statistical estimates of
the model parameters. Although such approaches have beesesstul in applications to
many problems, their performance are still far from whatdgaal visual systems can do,
which isone sample learningThis can be defined as the ability, given one picture of an
object, to spot instances of the same object, under the asgumthat these new views can
be induced by the single available example.
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Being able to perform that type of one-sample learning apoads to the ability, given
one example, to sort out which elements of a test set are «faime class (i.e. one class
vs. the rest of the world). This can be done by comparing onenlayall the elements of
the test set with the reference example, and labelling dseoc$ame class those which are
similar enough Learning techniques can be used to choose the similarigsare, which
could be adaptive and learned from a large number of exargpldasses not involved in
the test.

Thus, given a large number of training images of a large nurabebjects labeled with
their actual classes, and provided two pictures of unknoljaats (objects whicllo not
appear in the training picturgs we want to decide if these two objects are actually the
same object. The firstimage of such a couple can be seen afatsaining example, and
the second image as a test example. Averaging the erroryatpbating that test several
times provides with an estimate of a one-sample learnind.J@8or rate.

The idea of “learning how to learn” is not new and has beeniagjoh various settings [12].
Taking into account and/or learning relevant geometriaiiiances for a given task has been
studied under various forms [1, 8, 11], and in [7] with theldoachieve learning from very
few examples. Finally, the precise one-sample learniningetonsidered here has been
the object of recent research [4, 3, 5] proposing differeethods (hyperfeature learning,
distance learning) for finding invariant features from a afetraining reference objects
distinct from the test objects. This principle has also bdidinbednterclass transfer

The present study proposes a generic approach, and avoalgphgeit description of the
space of deformations. We propose to build a large numbeinafysplits of the image
space, designed to assign the same binary label to all tlges@mmon to a same object.
The binary mapping associated to such a split is thus highlgriant across the images
of a certain object while highly variant across images dfedént objects. We can define
such a split on the training images, and train a predictoxteral it to the complete image
space by induction. We expect the predictor to respond ailyibn two images of a same
object, and differently on two images of two different oltgewith probability 3. The
global criterion to compare two images consists roughlyonfiting how many such split-
predictors responds similarly and compare the result toeal fikreshold.

The principle of transforming a multiclass learning prablento several binary ones by
class grouping has a long history in Machine Learning [10pnfrthis point of view the
collected output of several binary classifiers is used asyafaracoding class membership.
In [2] it was proposed to carefully choose the class groupsmas to yield optimal sep-
aration of codewords (ECOC methodology). While our methogtlated to this general
principle, our goal is different since we are interestedeicognizing yet-unseen objects.
Hence, the goal is not to code multiclass membership; oursfée not on designing effi-
cient codes — splits are chosen randomly and we take a largbenuof them — but rather
on how to use the learned mappings for learning unknown thjec

2 Data and features

To make the rest of the paper clearer to the reader, we noadunte the data and feature
sets we are using for our proof of concept experiments. Hewewte that while we have
focused on image classification, our approach is genericanld be applied to any signals
for which adaptive binary classifiers are available.

2.1 Data

We use two databases of pictures for our experiments. Thefiesis the standard COIL-
100 database of pictures [9]. It contaif)0 images corresponding 100 different objects
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Figure 1: Four objects from th&)0 objects of the COIL-100 database (downsampled to
38 x 38 grayscale pixels) and four symbols from th&) symbols of ourATEX symbol
database 4, ®, < and, resolution28 x 28). Each image of the later is generated by
applying a rotation and a scaling, and by adding lines of camdjrayscales at random
locations and orientations.
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Figure 2: The figure on the left shows how an horizontal eglgg. is detected: the six
differences between pixels connected by a thin segmenttbawe all smaller in absolute
value than the difference between the pixels connectedéthibk segment. The relative
values of the two pixels connected by the thick segment defiegoolarity of the edge
(dark to light or light to dark). On the right are shown thehgidifferent types of edges.

seen froni72 angles of view. We down-sample these images from theirmalgiesolution

to 38 x 38 pixels, and convert them to grayscale. Examples are givégure 1 (left). The
second database contains imageddf IATEX symbols. We generatet] 000 images of
each symbol by applying a random rotation (angle is takewdsn—20 and+20 degrees)
and a random scaling factor (up 1025). Noise is then added by adding random line
segments of various gray scales, locations and orientatidhe final resulting database
containsl 50, 000 images. Examples of these degraded images are given in figtight).

2.2 Features

All the classification processes in the rest of the paper ased on edge-based boolean
features. Let, , ; denote a basic edge detector indexed by a locdtion) in the image
frame and an orientatiod which can take eight different values, corresponding ta fou
orientations and two polarities (see figure 2). Such an edgectbr is equal td if and
only if an edge of the given location is detected at the sptification, and otherwise.
Afeaturefy, y,.21.4:,4 IS @ disjunction of the’s in the rectangle defined by, yo, x1, y1.
Thus, it is equal to one if and only Hx,y, 20 < 2 < 21,90 <y < y1,&z,4,0a = 1. FOr
pictures of siz&2 x 32 there is a total ofV = 1(32 x 32)2 x 8 ~ 2.10° features.
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Figure 3: These two histograms are representative of thnses of two split predictors
conditionally to the real arbitrary labelling(L | S).

3 Chopping

The main idea we propose in this paper consists of learniaggea humber of binary splits
of the image space which would ideally assign the same biladwgl to all the images of
any given object. In this section we define these splits asdri®e and justify how they
are combined into a global rule.

3.1 Splits

A split is a binary labelling of the image space, with the mnyp to give the same label
to all images of a given object. We can trivially produce eelibg with that property on
the training examples, but we need to be able to extend it &m@® not appearing in the
training data, including images of other objects. We suppbat it is possible to infer a
relevant split function on the complete image space, inofyidnages of other objects by
looking at the problem as a binary classification problenfierence is done by the mean
of a simple learning scheme: a combination of a fast featlerton based on conditional
mutual information (CMIM) [6] and a linear perceptron.

Thus, we creaté/ arbitrary splits on the training sample by randomly assigrthe la-
bel 1 to half of the N objects appearing in the training set, ahdb the others. Since
there are(N]iT/z) such balanced arbitrary labellings, witvy- of the order of a few tens, a
very large number of splits is available and only a small stib$ them will be actually
used for learning. For each one of those splits, we train digie using the scheme de-
scribed above. LetSy,..., Sy ) denote the family of arbitrary splits arid, ..., Las)
the split-predictors. The continuous outputs of theseiptexs before thresholding will be
combined in the final classification.

3.2 Combining splits

To combine the responses of the various split predictorgglyeon a set of simple condi-
tional independence assumptions (comparable to the “Baiyes” setting) on the distribu-
tion of the true class labé&l' (each class corresponds to an object), the split Ialsglsand
the predictor output$L;) for a single image. We do not assume that for test image pairs
(I, I) the two images are independent, because we want to encomhgasase where
pairs of images of the same object are much more frequenttiegrwould be if they were
independent (typically in our test data we have arrangeavte0% of test pairs picturing
the same object). We however still need soroeaditionalindependence assumption for
the drawing of test image pairs. To simplify the notation weateL' = (L}), L? = (L?)

the collection of predictor outputs for images 1 ands2, = (S}),S? = (S?) the col-
lection of their split labels and’;, Cs their true classes. The conditional indepence



assumptions we make are summed up in the following Markoweépncy diagram:

Lt — 8¢ 51
Ly S Sy L

In words, for each split, the predictor outpuL; is assumed to be independent of the true
classC conditionally to the split labeb;; and conditionally to the split labelss,, S;) of
both images, the outputs of predictors on test pair imageassumed to be independent.

FlnaIIy, we make the additional symmetry hypothesis thatiitionally toC; = C5, for all
: S} = 82 = S; and(S;) are independent Bernoulli variables with paramétér while
condmonally toC, # C, all split labels(S}, S?) are independent Bernoulli(0.5).

Under these assumptions we then want to compute the logratids

P(Cy =y L', L?) P(Ll7 L? |C1 = Cs) P(Cy = Cy)

= log + log @
P(Cy # Co| LY, L?) P(LY, L?|Cy # Cy) P(Cy # Co)
In this formula and the next ones, when handling real-vakadhblesl,, L, we are im-
plicitly assuming that they have a density with respect toltebesgue measure and prob-
abilities are to be interpreted as densities with some ablusetation. We assume that the
second term above is either known or can be reliably estuindter the first term, under
the aforementioned independence assumptions, the foliplolds (see appendix):

P(L',L?|Cy = Cy)
P(L',L2|Cy # Ca)

log

log

Nlog2+210g ol +(1—al)(1—-ad), (2

wherea! = P(S! = 1| L{). As a quick check, note that if the predictor outp(is) are
uninformative (i.e. every probability] is 0.5), then the above formula gives a ratio of 1

which is what we expect. If they are perfectly informative (iall o) are 0 or 1), the odds
ratio can take the values O (if for sorjeve can ensuré‘1 # 52 this excludes the case

Cy = Cy) or 2" (if for all j we haveS} = S? there is stlll atlny chance that; # C, if
by chance’;, C; are on the same S|d]e of each split).

To estimate the probabilitieB(S; | L,), we use a simple 1D Gaussian model for the output
of the predictor given the true split label. Mean and vargaie estimated from the training
set for each predictor. Experimental findings show that@asissian modelling is realistic
(see figure 3).

4 Experiments

We estimate the performance of the chopping approach byaongpit to classical learning
with several examples of the positive class and to a direchleg of the similarity of two
objects on different images. For every experiment, we usavaly of 10,000 features
sampled uniformly in the complete set of features (see@eti2)

4.1 Multiple example learning

In this procedure, we train a predictor with several pictuné a positive class and with
a very large number of pictures of a negative class. The numbpositive examples
depends on the experiments (frdnto 32) and the number of negative exampleg,i800
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Figure 4. Error rates of the chopping, smart-chopping (ge2), multi-example learning
and learnt similarity on the*IgX symbol (left) and the COIL-100 database (right). Each
curve shows the average error and a two standard deviatienvéh, both estimated on ten
experiments for each setting. Theaxis shows either the number of splits for chopping or
the number of samples of the positive class for the multiga learning.

for both the COIL-100 and théTgX symbol databases. Note that to handle the unbalanced
positive and negative populations, the perceptron biafiésen to minimize a balanced
error rate. In each case, and for each number of positivelsampe runl0 experiments.
Each experiment consists of several cross-validatioresysb that the total number of test
pictures is roughly the same as the number of pairs in ongleat@chniques experiments
below.

4.2 One-sample learning

For each experiment, whatever the predictor is, we firscs8letraining objects from the
COIL-100 database (respectivelg0 symbols from theAIgX symbol database). The test
error is computed witB00 pairs of images of the0 unseen objects for the COIL-100, and
1,000 pairs of images of th80 unseen objects for théTEX symbols. These test sets are
built to have as many pairs of images of the same object thae phimages of different
objects.

Learnt similarity:  Note that one-sample learning can also be simply cast andasth
binary classification problem of pairs of images into thessés{same, differefjt We
therefore want to compare the Chopping method to a more atdnéarning method di-
rectly on pairs of images using a comparable set of featufes.every single featur¢
on single images, we consider three features of a pair ofénatanding for the conjunc-
tion, disjunction and equality of the feature responsesiertiwo images. From th&), 000
features on single images, we thus create a s&d,@f00 features on pairs of images.

We generate a training set 8f000 pairs of pictures for the experiments with the COIL-
100 database ang 000 for the BTeX symbols, half picturing the same object twice, half
picturing two different objects. We then train a predictonitar to those used for the
splits in the chopping scheme: feature selection with CMdl linear combination with
a perceptron (see section 3.1), using3he000 features described above.

Chopping: The performance of the chopping approach is estimated f@rakenumbers

of splits (from1 to 1024). For each split we seledd objects from the training objects, and
select at randorh, 000 training images of these objects. We generate an arbitedanbed
binary labelling of thes&0 objects and label the training images accordingly. We then



build a predictor by selecting, 000 features with the CMIM algorithm, and combine them
with a perceptron (see section 3.1).

To compensate for the limitation of our conditional indegence assumptions we allow to
add a fixed bias to the log-odds ratio (1). This type of coroects common when using

naive-Bayes type assumptions. Using the remaining trgiobjects as validation set, we
compute this bias so as to minimize the validation error. Mégst that no objects of the
test classes be used for training.

To improve the performance of the splits, we also test a “Shwarsion of the chopping
for which each split is built in two steps. The first step is ismto what is described
above. From that first step, we remove ttieobjects for which the labelling prediction
has the highest error rate, and re-build the split with4beemaining objects. This get
rid of problematic objects or inconsistent labelling (fostance trying to force two similar
objects to be in different halves of the split).

4.3 Results

The experiments demonstrate the good performance of chgpyien only one example
is available. Its optimal error rate, obtained for the latgeumber of splits, i1¥.41%

on the &TpX symbol database antll.42% on the COIL-100 database. By contrast, a
direct learning of the similarity (see section 4.2), reactespectivelyi5.54% and18.1%
respectively with8, 192 features.

On both databases, the classical multi-sample learnirgnsehequire82 samples to reach
the same level of performancel)(51% on the COIL-100 and0.7% on the ETgX sym-
bols).

The error curves (see figure 4) are all monotonic. There isvedfitting when the num-
ber of splits increases, which is consistent with the abseafglobal learning: splits are
combined with an ad-hoc Bayesian rule, without optimizingla@bal functional, which
generally also results in better robustness.

The smart splits (see section 4.2) achieve better perfarenauitially but eventually reach
the same error rates as the standard splits. There is ntevil@gradation of the asymptotic
performance due to either a reduced independence betwkisnosfa diminution of their
separation power. However the computational cost is twéckigh, since every predictor
has to be built twice.

5 Conclusion

In this paper we have proposed an original approach to legithe appearance of an object
from a single image. Our method relies on a large number @fichahl splits of the image
space designed to keep together the images of any of théntyadbjects. These splits
are learned from a training set of examples and combinedarBayesian framework to
estimate the posterior probability for two images to shogvgame object.

This approach is very generic since it never makes the sgfaagnaissible perturbations
explicit and relies on the generalization properties offaraily of predictors. It can be
applied to predict the similarity of two signals as soon asmily of binary predictors
exists on the space of individual signals.

Since the learning is decomposed into the training of séwpldas independently, it can
be easily parallelized. Also, because the combinationisutgmmetric with respect to the
splits, the learning can be incremental: splits can be atlléte global rule progressively
when they become available.



Appendix: Proof of formula (2). For the first factor, we have
P(L' L?|Cy = Cy)
=Y P L*|Cy=Cy, 8" =587 =5")P(S" =5',5% = 57| C1 = ()
=Y P(LNL?|S' =587 =s")P(S" = 5", 8% =57 |Cy = Cy)
=Y I P@iIst =sHP(L;|S? = s7)P((S},S7) = (si,57) | Ch = Ca)
=27 N[ (P(L}| S} = V)P(LF| 8] = 1)+ P(L} | S} = 0)P(L} | S} = 0)) .
In the second equality, we have used thats independent ot given S. In the third

equality, we have used that thé{) are independent givesi. In the last equality, we have
used the symmetry assumption on the distributiot%f S;) givenCy, = Cs. Similarly,

P(LLI2(Cy# Co) =4[] 30 PULISE = s)P(LE |57 = 52)

i 81,52

3 P(S} = 51| Lj)P(S} = 5| L)

:4*NHP(L})P(L?) P8 = 50)P(S% = 52)

51,52

=4V [ P(LHP(LY),

sinceP(Sf = 5) = 1 by the symmetry hypothesis. Taking the ratio of the two fectmd
using the latter property again leads to the conclusion.
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