EE613
Machine Learning for Engineers

Generative models. Introduction to Graphical models

jean-marc odobez
2015
overview

- Graphical models fundamentals
 - bayesian networks, representations
 - probability factorization
 - conditional independence
 - undirected graphical models

- Learning
 - Maximum Likelihood, Bayesian learning, Maximum a Posteriori (MAP)
 - the EM algorithm, latent variable models (GMM)

- Continuous Latent variable
 - Principle Component Analysis (PCA)
 - Probabilistic PCA

- Inference algorithms
Graphical models: inference

- Given a factorized form of the distribution
 - Directed graphical model (product of probability of each node given its parents)
 - Undirected graphical model (product over cliques)

- **Inference**: given a learned model, compute posterior of one or more subset of the nodes given other nodes

- **Approach**
 - Use factorized form to do this efficiently
 - Inference will appear as
 - Propagation of local messages
 - Local updates

- Remaining of lecture:
 - Exact inference
 - Inference on chain + derive general algorithm for trees
 - Approximate inference: sampling methods
Inference on a chain: example

How to infer the marginal \(p(x_3) \)?

We consider discrete variables, each with K states
 - each potential \(\psi_{i-1,i}(x_{i-1}, x_i) \) can be presented by a K x K table

Note: we focus on undirected models: directed chains can be easily transformed in undirected versions

\[
p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4)
\]
Inference on a chain: example

\[p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \]

\[p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} p(x) = \frac{1}{Z} \sum_{x_1} \sum_{x_2} \sum_{x_4} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \]

\[p(x_3) = \frac{1}{Z} \left(\sum_{x_2} \psi_{2,3}(x_2, x_3) \sum_{x_1} \psi_{1,2}(x_1, x_2) \right) \left(\sum_{x_4} \psi_{3,4}(x_3, x_4) \right) \mu_\beta(x_3) \]

\[\Rightarrow p(x_3) = \frac{1}{Z} \mu_\alpha(x_3) \mu_\beta(x_3) \]

1) compute \[\mu_\alpha(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \]

\[\mu_\beta(x_3) = \sum_{x_4} \psi_{3,4}(x_3, x_4) \]

2) compute \[\mu_\alpha(x_3) = \sum_{x_2} \psi_{2,3}(x_2, x_3) \mu_\alpha(x_2) \]

- marginal as product of two "messages" coming from the left and the right
Inference on a chain: generalisation (1)

Similarly, infer marginal of one of the node

\[p(x) = \frac{1}{\mathcal{Z}} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]

Similarly, infer marginal of one of the node

\[p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(x) \]

Brute force evaluation – complexity exponential in number of steps

- \(K^{N-1} \) summation
- \(K \) products per summation term
 => around \(K^N \) operations
The marginal can be interpreted as the product of local messages coming from
- the left summarizing the marginalization on the nodes on the left
- the right summarizing the marginalization involving the right nodes
Inference on a chain : generalisation (3)

The messages can be computed recursively

\[
\mu_\alpha(x_n) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \left[\sum_{x_{n-2}} \cdots \right]
\]

\[
= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1}).
\]

\[
\mu_\beta(x_n) = \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \left[\sum_{x_{n+2}} \cdots \right]
\]

\[
= \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_\beta(x_{n+1}).
\]
Inference on a chain: generalisation (4)

- **Initial conditions**
 \[
 \mu_\alpha(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \\
 \mu_\beta(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)
 \]

- **Normalization constant** given by
 \[
 Z = \sum_{x_n} \mu_\alpha(x_n) \mu_\beta(x_n)
 \]

- **Summary:** to compute local marginals
 - compute and store all forward messages \(\mu_\alpha(x_n) \)
 - compute and store all backward messages \(\mu_\beta(x_n) \)
 - compute \(Z \) at any node
 - for all variables required, compute
 \[
 p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)
 \]

- **Complexity**
 - each recursion step \(K^2 \) operations
 - 2 recursions with \(N \) steps
 Complexity: \(N \times K^2 \) - linear in the number of steps
Inference on a chain: generalisation (5)

- Computation of marginals given some observed nodes (evidence)
 - apply exactly the same procedure
 - sums over observed nodes 'disappear'
 => clamp all terms involving evidence to their values

- Example: compute \(p(x_n | x_4 = a) \)
 - assume \(n > 4 \) then, in alpha recursion
 \[
 \mu_\alpha(x_4) = \sum_{x_3} \psi_{3,4}(x_3, x_4) \mu_\alpha(x_3)
 \]
 => needs to be computed only for \(x_4 = a \)

and
\[
\mu_\alpha(x_5) = \sum_{x_4 \in \{a\}} \psi_{4,5}(x_4, x_5) \mu_\alpha(x_4) = \psi_{4,5}(a, x_5) \mu_\alpha(x_4 = a)
\]
Generalization of principle to other graph structures

- **Undirected graphs**: Trees = no loop (or cycles)
 - existence of a unique path from any node to any other node

- **Directed graphs**
 - **Trees**: one root, all other nodes have one parent at most
 - **Polytrees**: unique path from any node to any other node (not taking into account arrow directions)
Factor graphs

\[p(x) = f_a(x_1, x_2)f_b(x_1, x_2)f_c(x_2, x_3)f_d(x_3) \]

\[p(x) = \prod_s f_s(x_s) \]

- Probability distributions: product over factors
- Factor graphs
 - explicit representation of this fact
 - bipartite graph with variables as one node type; factors as the other nodes
 - edges: link between variable node \(x_i \) and factor node \(f_s \) if \(x_i \) is a variable of \(f_s \)
 - useful to generalize message passing algorithms
Factor graphs from directed graphs

\[p(\mathbf{x}) = p(x_1)p(x_2) \quad f(x_1, x_2, x_3) = \]
\[p(x_3 | x_1, x_2) \quad p(x_1)p(x_2)p(3 | x_1, x_2) \]
\[f_a(x_1) = p(x_1) \quad f_b(x_2) = p(x_2) \]
\[f_c(x_1, x_2, x_3) = p(x_3 | x_1, x_2) \]

- Allows to be more explicit about the factorization (when transforming a directed graph to an undirected one)
- Note: above sample
 - polytree
 - resulting factor graph has a tree structure
Factor graphs from undirected graphs

\[
\psi(x_1, x_2, x_3)
\]

\[
f(x_1, x_2, x_3) = \psi(x_1, x_2, x_3)
\]

\[
f_a(x_1, x_2, x_3) f_b(x_2, x_3) = \psi(x_1, x_2, x_3)
\]

example with the same clique structure but a different factorization
Exact inference on trees: sum product algorithm

- Assumption: factor graph has a tree structure
 => can be applied to directed/undirected trees, directed polytrees

- Objectives
 - obtain an efficient, exact inference algorithm for finding marginals;
 - in situations where several marginals are required, allow computations to be shared efficiently

- Key principles
 - use factorized expression
 - distributive law: interchange summation and product => \(ab + ac = a(b+c) \)
 => generalizes principle seen on chains to more 'branches'

- Note: belief propagation is a special case of sum-product algorithm
Sum product algorithm: example (1)

- Factor-to-variable messages $\mu_{f_j \rightarrow x_i}(x_i)$ summarizes marginalization in subtree associated with factor f_j not comprising node x_i.

\[
p(x_2) = \frac{1}{Z} \sum_{x_1} \sum_{x_3} \sum_{x_4} f_1(x_1, x_2) f_3(x_3, x_2) f_4(x_2, x_4)
\]

\[
p(x_2) = \frac{1}{Z} \frac{\left(\sum_{x_1} f_1(x_1, x_2) \right) \left(\sum_{x_3} f_3(x_3, x_2) \right) \left(\sum_{x_4} f_4(x_2, x_4) \right)}{\mu_{f_1 \rightarrow x_2}(x_2) \mu_{f_3 \rightarrow x_2}(x_2) \mu_{f_4 \rightarrow x_2}(x_2)}
\]

\[
p(x_2) = \frac{1}{Z} \mu_{f_1 \rightarrow x_2}(x_2) \mu_{f_3 \rightarrow x_2}(x_2) \mu_{f_4 \rightarrow x_2}(x_2)
\]
Sum product algorithm: example (2)

\[
p(x_2) = \frac{1}{Z} \sum_{x_1} \sum_{x_3} \sum_{x_4} \sum_{x_5} \sum_{x_6} f_1(x_1, x_2) f_3(x_3, x_2) f_4(x_2, x_4) f_5(x_4, x_5) f_6(x_4, x_6)
\]

- Only subtree where nodes were added is affected
- message has to be computed recursively from subtree
Sum product algorithm: example (3)

- At factor node f: to propagate message to a given node
 - combine using the factor term messages coming from all the other subtrees of the factor f => involves variable-to-factor messages

- Variable-to-factor message $\mu_{x_i \rightarrow f_j}(x_i)$
 - summarizes marginalization in subtree associated with variable x_i
 - not comprising factor f_j and node x_i
Sum product algorithm : general case (1)

- Tree structure: partition factors in different subgroups related to neighbors

\[
p(x) = \sum_{x \setminus x} p(x) \\
p(x) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)
\]
Sum product algorithm: general case (2)

How to compute these messages recursively?

How to compute these messages recursively?
\[\mu_{f_s \rightarrow x} = \sum_{X_s} F_s(x, X_s) \]

Note: \(X_s = \{x_1, \ldots, x_m, X_{s_1}, \ldots, X_{s_M}\} \)

\[
F_s(x, X_s) = f_s(x, x_1, \ldots, x_M) G_1(x_1, X_{s_1}) \cdots G_M(x_M, X_{s_M})
\]

Product of factors involving nodes from subtree linked to \(x_1 \)

Thus
\[
\mu_{f_s \rightarrow x(x)} = \sum_{x_1} \ldots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{s_m}} G_m(x_m, X_{s_m}) \right]
\]

Variable-to-factors messages
Sum-product algorithm: general case (4)

\[\mu_{x_M \rightarrow f_s}(x_M) \]

Variable-to-factor message = product of incoming factor-to-variable messages

\[\mu_{x_M \rightarrow f_s}(x_M) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml}) = \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \rightarrow x_m}(x_m) \]

Variable-to-factor message = product of incoming factor-to-variable messages
Sum product algorithm : update summary

Variable-to-factor message

\[
\mu_{f \rightarrow x}(x) = \sum_{x_i \in \text{ne}(f) \setminus x} f(x, x_1, \ldots, x_i, \ldots) \prod_{x_i} \mu_{x_i \rightarrow f}(x_i)
\]

Initialisation

\[
\begin{align*}
\mu_{x \rightarrow f}(x) &= 1 \\
\mu_{f \rightarrow x}(x) &= f(x)
\end{align*}
\]

Message schedule : a message can be sent from a node only if it has received all requested messages from its neighbours.

Marginals

\[
p(x) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x)
\]
To compute all local marginals:

1. Pick an arbitrary node as root.
2. **Collect evidence**: compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
3. **Distribute evidence**: Compute and propagate messages from the root to the leaf nodes, storing received messages at every node. (Warning: this can include using messages from step 2).
4. Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

Dealing with evidence/observations:

as in the chain case, when nodes are observed, summation is not needed.
Sum-product: worked out example (1)

\[\tilde{p}(\mathbf{x}) = f_a(x_1, x_2)f_b(x_2, x_3)f_c(x_2, x_4) \]

- First step

select \(x_3 \) as root node \(\Rightarrow \) \(x_1 \) and \(x_4 \) are leaves
Sum-product : worked out example (2)

- Forward sequence of messages
 (leaves to root)

\[
\begin{align*}
\mu_{x_1 \to f_a}(x_1) &= 1 \\
\mu_{f_a \to x_2}(x_2) &= \sum_{x_1} f_a(x_1, x_2) \\
\mu_{x_4 \to f_c}(x_4) &= 1 \\
\mu_{f_c \to x_2}(x_2) &= \sum_{x_4} f_c(x_2, x_4) \\
\mu_{x_2 \to f_b}(x_2) &= \mu_{f_a \to x_2}(x_2) \mu_{f_c \to x_2}(x_2) \\
\mu_{f_b \to x_3}(x_3) &= \sum_{x_2} f_b(x_2, x_3) \mu_{x_2 \to f_b}(x_2)
\end{align*}
\]
Sum-product: worked out example (3)

- Backward sequence of messages (root to leaves)

\[
\begin{align*}
\mu_{x_3 \rightarrow f_b}(x_3) &= 1 \\
\mu_{f_b \rightarrow x_2}(x_2) &= \sum_{x_3} f_b(x_2, x_3) \\
\mu_{x_2 \rightarrow f_a}(x_2) &= \mu_{f_b \rightarrow x_2}(x_2) \mu_{f_c \rightarrow x_2}(x_2) \\
\mu_{f_a \rightarrow x_1}(x_1) &= \sum_{x_2} f_a(x_1, x_2) \mu_{x_2 \rightarrow f_a}(x_2) \\
\mu_{x_2 \rightarrow f_c}(x_2) &= \mu_{f_a \rightarrow x_2}(x_2) \mu_{f_b \rightarrow x_2}(x_2) \\
\mu_{f_c \rightarrow x_4}(x_4) &= \sum_{x_2} f_c(x_2, x_4) \mu_{x_2 \rightarrow f_c}(x_2)
\end{align*}
\]
Compute marginal (e.g. at node 2)
- note: we need messages from both the forward and backward pass
- Verify that it corresponds to the definition

\[
\tilde{p}(x_2) = \mu_{f_a \rightarrow x_2}(x_2)\mu_{f_b \rightarrow x_2}(x_2)\mu_{f_c \rightarrow x_2}(x_2)
\]
\[
= \left[\sum_{x_1} f_a(x_1, x_2) \right] \left[\sum_{x_3} f_b(x_2, x_3) \right] \left[\sum_{x_4} f_c(x_2, x_4) \right]
\]
\[
= \sum_{x_1} \sum_{x_3} \sum_{x_4} f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)
\]
\[
= \sum_{x_1} \sum_{x_3} \sum_{x_4} \tilde{p}(x)
\]
Remarks and discussions

- Continuous variables
 - algorithm also works on Gaussian networks

- General graphs : junction tree
 - Message-passing algorithm can be generalized to do exact inference
 - Needs first to turn initial graph into a Junction Tree, and then run a sum-product like algorithm on it
 - Intractable on graphs with large cliques/loops

- Loopy belief propagation
 - apply sum-product algorithm on general graphs
 - initially, pass message across all links; then messages are passed around until convergence (not guaranteed)
 - **Approximate** but **tractable** for large graphs
 - sometimes works well, sometimes not at all
Graphical models: inference

- **Exact inference**
 - inference on chain
 - derive general algorithm for trees

- **Approximate inference: sampling methods**
 - importance sampling
 - Markov Chain Monte-Carlo (MCMC)
Sampling approaches

- **Intuition:**
 approximate distribution using a set of M weighted samples

\[
\{(x^{(m)}, \pi^{(m)})\}_{m=1,...,M} \quad \sum_m \pi^{(m)} = 1 \quad p(x) \simeq \sum_m \pi^{(m)} \delta(x - x^{(m)})
\]

- **Usage:**
 - compute expectation of function f
 \[
 E_p[f] = \int f(x)p(x)dx \simeq \sum_m \pi^{(m)} f(x^{(m)})
 \]
 - In particular, mean expectation of state ($f(x)=x$)
 - find max of distributions

- **How do we get these samples?**
Perfect sampling

- Target distribution \(p(x) \)
- Draw \(M \) samples \(x^{(m)} \sim p(x), m = 1 \cdots M \)
- Approximation

\[
p(x) \approx \sum_{m=1}^{M} \frac{1}{M} \delta(x - x^{(m)})
\]

- Expectation w.r.t. \(p \)

\[
\mathbb{E}_p[f] = \int f(x)p(x)dx \quad \longrightarrow \quad I_M(f) = \frac{1}{M} \sum_{m=1}^{M} f(x^{(m)})
\]

- Approximation: unbiased, converges when \(M \) goes to infinity
- Usually (case of interest)
 - difficult to sample from \(p \) directly!
 - however, we assume that we can evaluate \(p(x) \) easily
Importance sampling

- Use a ‘proposal’ auxiliary function \(q \)
 - \(q : \) as close as possible to \(p \) (and \(\text{supp}(p) \) included in \(\text{supp}(q) \))
 - \(\text{i.e. } q(x) = 0 \Rightarrow p(x) = 0 \)
 - Draw the samples from \(q \) instead of \(p \)

\[
x^{(m)} \sim q(x), \ m = 1 \cdots M
\]
\[
\Rightarrow \mathbb{E}_p[f] = \int f(x) \frac{p(x)}{q(x)}q(x)dx \approx \frac{1}{M} \sum_{m=1}^{M} f(x^{(m)}) \frac{p(x^{(m)})}{q(x^{(m)})}
\]

- Importance weights

\[
\pi(m) \propto \frac{p(x^{(m)})}{q(x^{(m)})}
\]
\[
\sum_{m=1}^{M} \pi(m) = 1
\]

\(\Rightarrow \) correction factor: samples were drawn from \(q \) instead of \(p \)
Importance sampling

- Importance weights

\[\pi(m) \propto \frac{p(x^{(m)})}{q(x^{(m)})} \]
\[\sum_{m=1}^{M} \pi(m) = 1 \]

⇒ large weight if \(q \) is smaller than \(p \)
⇒ larger weights where \(q \) will simulate less samples than \(p \) would

- Approximation of \(p \)

\[p(x) \approx \sum_{m=1}^{M} \pi(m) \delta(x - x^{(m)}) \]
Comment

\[E_p[f] = \int f(x)p(x)\,dx \simeq \sum_m \pi^{(m)} f(x^{(m)}) \]

\[\pi^{(m)} \propto \frac{p(x^{(m)})}{q(x^{(m)})} \]

- Expectation is well approximated if samples are drawn where
 - \(p(x) \) is large
 - \(f(x) \) is large

- Consequence
 - approximation works well if \(q(x) \) draws samples where \(p(x) \) is large, which indirectly means that \(q(x) \) should be as close as possible to \(p(x) \)
 - or if \(q(x) \) draws samples where \(f(x) \) is large
Example: likelihood weighted sampling

- For $p(x)$ given by a Directed Acyclic Graph

 \[p(x) = \prod_{k=1}^{L} p(x_k | x_{\text{pa}(k)}) \]

- Assume that there is no evidence (i.e. all x_k are unknown)
 \Rightarrow just draw samples using ancestral sampling (i.e. draw them when parents are known, cf first course)

- Assume that some x_k are observed (k in Ev: evidence set)
 - use ancestral sampling for unobserved variables
 - use observed values for the others
 \Rightarrow equivalent to draw sample from

 \[
 q(x) = \prod_{k \notin \text{Ev}} p(x_k | x_{\text{pa}(k)}) \prod_{k \in \text{Ev}} \delta(x_k - x_k^{obs})
 \]

- easy to show that the weights are given by

 \[
 \pi^{(m)} \propto \frac{p(x^{(m)})}{q(x^{(m)})} = \frac{\prod_{k \notin \text{Ev}} p(x_k^{(m)} | x_{\text{pa}(k)}^{(m)}) \prod_{k \in \text{Ev}} p(x_k^{(m)} | x_{\text{pa}(k)}^{(m)})}{\prod_{k \notin \text{Ev}} p(x_k^{(m)} | x_{\text{pa}(k)}^{(m)})} = \prod_{k \in \text{Ev}} p(x_k^{(m)} | x_{\text{pa}(k)}^{(m)})
 \]
Example: importance sampling and EM

- In EM algorithm, approximate the E step when E step can not be performed analytically or is costly (e.g. when latent space is large)
- Model: Z latent variables – X observed ones – parameters θ
- EM: we are optimizing the Expected Log-likelihood
 \[
 Q(\theta, \theta^{old}) = \int p(Z|X, \theta^{old}) \ln p(Z, X|\theta) dZ
 \]
- Rather than computing the full posterior of latent variables, we can draw samples from it to approximate Q, which is then optimized in the usual way in the M step
 \[
 Z^{(m)} \sim p(Z|X, \theta^{old}) \quad Q(\theta, \theta^{old}) \approx \frac{1}{M} \sum_{m=1}^{M} \ln p(Z^{(m)}, X|\theta)
 \]
- Special cases:
 - **stochastic EM**: draw only a single Z from the posterior (hard assignment)
 - extract the value of Z for which the posterior is maximum
 often used with HMM (when having enough training data),
 i.e. use Viterbi decoding to find optimal path and only keep this one for M step
Graphical models : inference

- Exact inference
 - inference on chain
 - derive general algorithm for trees

- Approximate inference: sampling methods
 - importance sampling
 - Markov Chain Monte-Carlo (MCMC)
Gibbs sampling (1)

- Get samples from \(p(x_1, x_2, x_3) \)
- Basic idea to get a chain of samples
 - initialize \(x^0 \)
 - then generate new samples by
 - selecting \(x_i \) in turn
 - sampling \(x_i \) from the local posterior
 - keeping the other \(x_j \) unchanged (i.e. just recopy them)
- After some time, the samples of the chain are true samples from the distribution

\[
\begin{align*}
\mathbf{x}^{(0)} &= (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}) \\
\mathbf{x}^{(1)} &= (x_1^{(1)}, x_2^{(1)}, x_3^{(1)}) \text{ with } x_1^{(1)} \sim p(x_1|x_2^{(0)}, x_3^{(0)}), x_2^{(1)} = x_2^{(0)}, x_3^{(1)} = x_3^{(0)} \\
\mathbf{x}^{(2)} &= (x_2^{(2)}, x_1^{(2)}, x_3^{(1)}) \text{ with } x_2^{(2)} \sim p(x_2|x_1^{(1)}, x_3^{(1)}), x_1^{(2)} = x_1^{(1)}, x_3^{(2)} = x_3^{(1)} \\
\mathbf{x}^{(3)} &= (x_3^{(3)}, x_2^{(2)}, x_1^{(2)}) \text{ with } x_3^{(3)} \sim p(x_3|x_1^{(2)}, x_2^{(2)}), x_1^{(3)} = x_1^{(2)}, x_3^{(3)} = x_3^{(2)} \\
\mathbf{x}^{(4)} &= (x_1^{(4)}, x_3^{(3)}, x_2^{(2)}) \text{ with } x_1^{(4)} \sim p(x_1|x_2^{(3)}, x_3^{(3)}), x_2^{(4)} = x_2^{(3)}, x_3^{(4)} = x_3^{(3)}
\end{align*}
\]
Gibbs sampling (2)

- Note: full conditional distribution

\[x_i \sim p(x_i | x_{-i}) \]

often, its computation depends only on some variables

e.g. graphical model: we only need to know the neighbors in the graph (Markov properties, i.e. conditional independence)
Gibbs sampling applied to the Ising model

Original Image x (hidden)

$x = \{x_i, i = 1 \ldots N\}$

Noisy Image y (observed)

$y = \{y_i, i = 1 \ldots N\}$

$N = \{(k,l) \text{ such that } x_k \text{ and } x_l \text{ are neighbors }\}$

$p(x) \propto \prod_{(i,j) \in N} \psi_{i,j}(x_i, x_j)$ with $\psi_{i,j}(x_i, x_j) = \exp(\beta x_i x_j)$

$p(y|x) \propto \prod_{i} \psi^d(y_i, x_i)$ with $\psi^d(y_i, x_i) = \exp(\alpha y_i x_i)$

$p(x,y) \propto \prod_{(i,j) \in N} \psi_{i,j}(x_i, x_j) \prod_{i} \psi^d(y_i, x_i)$

Notes:

- factors are higher when arguments are the same
- computing full posterior $p(x|y)$ (i.e. for all values of x) is intractable
- get samples to approximate distribution, eg use gibbs samplings
Gibbs sampling applied to the Ising model

Original Image x (hidden)
$x = \{ x_i, i = 1 \ldots N \}$

Noisy Image y (observed)
$y = \{ y_i, i = 1 \ldots N \}$

\[
p(x_i | x_{-i}, y) = p(x_i | x_{\text{nei}(i)}, y_i) \propto \exp(\eta x_i y_i) \prod_{j \in \text{nei}(i)} \psi_{i,j}(x_i, x_j)
\]

\[
p(x_i | x_{\text{nei}(i)}, y_i) \propto h(x_i)
\]

with $h(x_i) = \exp(\eta x_i y_i + \sum_{j \in \text{nei}(i)} \beta x_i x_j) = \exp(x_i (\eta y_i + \beta \lambda_i))$ with $\lambda_i = \sum_{j \in \text{nei}(i)} x_j$

\[
p(x_i = 1 | x_{\text{nei}(i)}, y_i) = \frac{h(x_i = 1)}{h(x_i = 1) + h(x_i = -1)} = \frac{\exp(\eta y_i + \beta \lambda_i)}{\exp(\eta y_i + \beta \lambda_i) + \exp(-\eta y_i - \beta \lambda_i)}
\]
Gibbs sampling applied to the Ising model

Original Image x (hidden) \[x = \{ x_i, i = 1 \ldots N \} \]

Noisy Image y (observed) \[y = \{ y_i, i = 1 \ldots N \} \]

\[p(x_i = 1 | x_{\text{nei}(i)}, y_i) = \frac{h(x_i = 1)}{h(x_i = 1) + h(x_i = -1)} = \frac{\exp(\eta y_i + \beta \lambda_i)}{\exp(\eta y_i + \beta \lambda_i) + \exp(-\eta y_i - \beta \lambda_i)} \]

- so, sampling \(x_i = 1 \) will be favored by having a \(y_i = +1 \) observation and \(\lambda_i > 0 \), i.e. having more neighbors with +1 than -1
- we can run the algorithms for enough iterations, and keep the samples (after removing initial samples, i.e. a burn-in period)
- we can use them to compute the mean of x according to the posterior
Markov Chains Monte Carlo

- Goal: sample from target distribution
- Approach: use Markov Chain
- Why?

\[p(X) \text{ noted here } \pi(X) \]
Markov Chains: stationary distribution

- The state distribution converges to a stationary distribution, whatever the starting distribution.

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
q_0 = q_{10} = K q_9 = \ldots = K^{10} q_0 = K^3 q_0 = K^2 q_1 = K q_1 = q_1
\]

\[
K \pi = \pi
\]
Metropolis-Hasting

- Metropolis-Hasting algorithm: published in 1953
- Idea:
 - set-up a Markov Chain
 - run the chain until stationary
 - all subsequent samples are from stationary distribution
 - If the stationary distribution is our target, we get our samples!

- In high dimension space
 - start at \(x_0 \sim q_0 \)
 - propose a move \(K(x_t, x_{t+1}) \)
 - \(K \) never stored as a big matrix!
 - \(K \) can be seen as a function/search operator
MCMC inference

- Empirical average

\[\frac{1}{T} \sum_{t=1}^{T} f(x^{(t)}) \]

- Converges to the expectation with respect to the stationary distribution

- Reason: the chain is **ergodic**
 - We can forget the initial state value \(x_0 \)
How do we get the right chain? $K \pi = \pi$

- In practice, we are given the target distribution π
- How do we construct the kernel K such that the target distribution is the stationary distribution of K?

- Idea: similar to importance sampling
 - select a proposal transition kernel $q(x,x')$
 - irreducible: you can reach any state from anywhere
 - recurrent: you will visit any state infinitely often
 - modify it to get the right stationary distribution
 - schematically

$$q(x,x') \not\equiv \pi \rightarrow \text{correction factor} \rightarrow K(x,x') \equiv \pi$$
Detailed balance

- a sufficient condition to converge to $\pi(x)$

$$\pi(x)K(x, x') = \pi(x')K(x', x)$$

“detailed balance”

- given $q(x, x')$, the detail balance is usually not satisfied
 - correction factor
 - reject a fraction of the moves to satisfy the detailed balance
 - insert a factor a in detailed balance

$$\pi(x)q(x, x') \times a = \pi(x')q(x', x)$$
Metropolis-Hasting algorithm

- Metropolis algorithm – produces a Markov Chain given our target distribution
 - generated set of samples \(\{ x^{(m)} \} \)

1) Start with \(x^{(0)} \) then iterate
2) propose \(x' \) from \(q(x^{(m)},x') \)
3) calculate acceptance ratio \(a \)
 \[
 a = \frac{\pi(x')q(x',x^{(m)})}{\pi(x^{(m)})q(x^{(m)},x')}
 \]
4) accept new sample with probability \(\min(a,1) \)
 - if accepted set: \(x^{(m+1)} = x' \)
 - else if rejected: set \(x^{(m+1)} = x^{(m)} \)

- Note special case if \(q \) is symmetric, i.e. \(q(x,x')=q(x',x) \)
 - \(x' \) more probable than \(x \): definitively accept (move to) the new sample
 - \(x' \) less probable than \(x \): we may move there (not forbidden) depending on relative probabilities.
Special case: Gibbs sampling

- Notations:
 - x variable
 - all components except the i^{th} one: $x_{-i} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_N)$

- Basic idea:
 - visit in turns each component x_i
 - draw sample from the local posterior of x_i given the all other variables

- More formally: define sequence of proposals

$\begin{align*}
q(x' \mid x) &= p(x'_i \mid x_{-i}) \delta(x'_i - x'_i) \\
& \text{given the other component, draw component } i \text{ from local} \\
& \text{all components different than } x_i \text{ need to be unchanged in new sample}
\end{align*}$

- it can be shown that under this assumption, $a = 1$, so the new sample is always accepted
Some notes on sampling methods

● Advantages
 ● often easier to implement than alternative methods
 ● applicable to a broader range of models (e.g. models in which the number of components can vary)
 ● sampling can be faster than other methods when applied to really huge models or datasets

● Notes
 ● Issue: consecutive samples are correlated so the chain can be slow at exploring well the state space
 ● Improved methods: block sampling, collapsed gibbs sampling, Rao-Blackwellization
 ● can be used to find optimum of function (simulated annealing)
Conclusion

- Exact inference in Graphical Model
 - Possible for tree-structured graphs
 - Efficient algorithms existing that work with local message-passing algorithms (analog to dynamic programming)
 - Sum-product (and max-product) algorithms useful for computing marginal (and most likely) inference
 - => useful for learning algorithms (cf HMM case)
 - Also possible when working with continuous variables (Gaussian)

- Approximate inference techniques
 - Sampling techniques : cf previous slide
 - Variational methods