Spectral k-Support Norm Regularization

Andrew McDonald

Department of Computer Science, UCL

(Joint work with Massimiliano Pontil and Dimitris Stamos)

25 March, 2015
Problem: Matrix Completion

Goal: Recover a matrix from a subset of measurements.

e.g. random sample of 10% of entries
Applications

- Collaborative filtering: predict interests of a user from preferences from many users (e.g. Netflix Problem)
- Triangulation of distances from an incomplete network (e.g. wireless network)
- Multitask learning: leverage commonalities between multiple learning tasks
- ...
Problem Statement

Given a subset Ω of observations of a matrix X, estimate the missing entries.

(i) ill-posed problem → assume X is low rank, use regularizer to encourage low rank structure

(ii) regularization with \textit{rank} operator is NP hard → use convex approximation, e.g. \textit{trace norm} (sum of singular values)

$$\min_W \| \Omega(W) - \Omega(X) \|_F^2 + \lambda \| W \|_{tr}$$
Trace Norm Regularization

- Trace norm is the tightest convex relaxation of \textit{rank} operator on the spectral norm unit ball. [Fazel, Hindi & Boyd 2001]

- Optimization can be solved efficiently using proximal gradient methods.

- Can be shown that this method finds true underlying matrix with high probability.

Goal: can we improve on the performance using other regularizers?
The Vector k-Support Norm

- The k-support norm is a regularizer used in sparse vector estimation problems. [Argyriou, Foygel & Srebro 2012]

- For $k \in \{1, \ldots, d\}$, unit ball is :

$$\text{co}\{w : \text{card}(w) \leq k, \|w\|_2 \leq 1\}.$$

- Includes $\| \cdot \|_1 (k = 1)$ and $\| \cdot \|_2 (k = d)$.

- Dual norm is the ℓ_2-norm of the largest k components of a vector.
Vector k-Support Unit Balls

- unit balls in \mathbb{R}^3 ($k = 1, 2, 3$)

- convex hull interpretation
The Spectral k-Support Norm

Extend the k-support norm to matrices.

- The k-support norm is a symmetric gauge function: induces the *spectral k-support norm* [von Neumann 1937]

$$\|W\|_{(k)} = \|(\sigma_1(W), \ldots, \sigma_d(W))\|_{(k)}$$

- Unit ball is given by

$$\text{co}\{W : \text{rank}(W) \leq k, \|W\|_F \leq 1\}.$$

- Includes $\|\cdot\|_{tr} (k = 1)$, and $\|\cdot\|_F (k = d)$.

[McDonald, Pontil & Stamos 2014]
The k-support norm can be written as

$$\|w\|_k = \inf_{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_i^2}{\theta_i}}, \quad \Theta = \{0 < \theta_i \leq 1, \sum_i \theta_i \leq k\}$$

Coordinate-wise separable using Lagrange multipliers.

The norm can be computed in $O(d \log d)$ time as

$$\|w\|_k^2 = \|w_{[1:r]}\|_2^2 + \frac{1}{k - r} \|w_{(r:d)}\|_1^2.$$

Similar computation for proximity operator of squared norm: can use proximal gradient methods to solve optimization.

Matrix case follows using SVD.
Extension: The \((k, p)\)-Support Norm

Fit the curvature of the underlying model.

- For \(p \in [1, \infty]\) define the vector \((k, p)\)-support norm by its unit ball

\[
\text{co}\{w : \text{card}(w) \leq k, \|w\|_p \leq 1\}.
\]

- The dual norm is the \(\ell_q\)-norm of the \(k\) largest components \((\frac{1}{p} + \frac{1}{q} = 1)\).

(Work in progress.)
The Spectral \((k, p)\)-Support Norm

Fit the curvature of the underlying spectrum.

- For \(p \in [1, \infty]\) the spectral \((k, p)\)-support unit ball is defined in terms of the Schatten \(p\)-norm
 \[
 \text{co}\{W : \text{rank}(W) \leq k, \|W\|_p \leq 1\}.
 \]

- Von Neumann again: \(\|W\|_{(k, p)} = \|\sigma(W)\|_{(k, p)}\).
Optimization

- For $p \in (1, \infty)$ the (k, p)-support norm can be computed as
 \[
 \|w\|_{(k,p)}^p = \|w_{[1:r]}\|_p^p + \frac{1}{(k - r)^{p/q}} \|w_{(r:d)}\|_1^p.
 \]

- For $p = 1$ we recover the ℓ_1 norm for all k, and for $p = \infty$ we have
 \[
 \|w\|_{(k,\infty)} = \max \left(\|w\|_\infty, \frac{1}{k} \|w\|_1 \right).
 \]

- For $p \in (1, \infty)$, we solve the constrained problem
 \[
 \arg\min_s \{ \langle s, \nabla \ell(w) \rangle : \|s\|_{(k,p)} \leq \alpha \}.
 \]

- For $p = \infty$ we can compute the projection onto the unit ball: can use proximal gradient methods.
Experiments: Matrix Completion

Benchmark datasets: MovieLens (movies), Jester (jokes)

<table>
<thead>
<tr>
<th>dataset</th>
<th>norm</th>
<th>test error</th>
<th>k</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieLens 100k</td>
<td>trace</td>
<td>0.2017</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>k-support</td>
<td>0.1990</td>
<td>1.87</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(k, p)-support</td>
<td>0.1988</td>
<td>2.00</td>
<td>1.16</td>
</tr>
<tr>
<td>Jester 1</td>
<td>trace</td>
<td>0.1752</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>k-support</td>
<td>0.1739</td>
<td>6.38</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(k, p)-support</td>
<td>0.1731</td>
<td>2.00</td>
<td>6.50</td>
</tr>
<tr>
<td>Jester 3</td>
<td>trace</td>
<td>0.1959</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>k-support</td>
<td>0.1942</td>
<td>2.13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(k, p)-support</td>
<td>0.1932</td>
<td>3.00</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Note: $k = 1$ is trace norm, $p = 2$ is spectral k-support norm.
Role of p in (k, p)-Support Norm

Spectral (k, p)-support norm:

- **Intuition**: for large p, the ℓ_p norm of a vector is increasingly dominated by the largest components.

- **Regularization with larger values of p** encourages matrices with flatter spectrum.

Spectrum of synthetic rank 5 matrix with different regularizers:
Extension: Connection to the Cluster Norm

- Using the infimum formulation

\[
\|w\|_{\text{box}} = \inf_{\theta \in \Theta} \sqrt{\sum_{i=1}^{d} \frac{w_i^2}{\theta_i}}, \quad \Theta = \{a < \theta_i \leq b, \sum_i \theta_i \leq c\}.
\]

- **Box norm** is a perturbation of the \(k\)-support norm \((k = \frac{d-ca}{b-a})\)

\[
\|w\|_{\text{box}}^2 = \min_{u,v} \left\{ \frac{1}{a} \|u\|_2^2 + \frac{1}{b-a} \|v\|_{(k)}^2 \right\}
\]

- Matrix case: we recover the *cluster norm* [Jacob, Bach, & Vert] used in multitask learning.
Role of a, c in Box Norm

Simulated datasets:

- Low signal/high noise: high a.
- High rank of underlying matrix: high k.

![Graph showing the relationship between SNR and a value](image1)

![Graph showing the relationship between true rank and k value](image2)
Further Work

- Statistical bounds on the performance of the norms: various results known [Chatterjee, Chen & Banerjee 2014, Maurer & Pontil 2012, Richard, Obozinski & Vert 2014]

- Infimum formulation of \((k, p)\)-support norm: known for \(p \in [1, 2]\), unclear for \(p \in (2, \infty]\).

- Study the family of norms for a general choice of the parameter set \(\Theta\). [Micchelli, Morales & Pontil 2013]
Conclusion

- Spectral k-support norm as regularizer for low rank matrix learning
- Spectral (k, p)-support norm allows us to learn curvature of the spectrum
- Box norm as perturbation of k-support norm
- Connection to multitask learning cluster norm
References

Sparse prediction with the k-support norm.

Generalized dantzig selector: Application to the k-support norm.
In *NIPS*, 2014.

A rank minimization heuristic with application to minimum orders system approximation.

Clustered multi-task learning: a convex formulation.

Structured sparsity and generalization.

Spectral k-support regularization.

Regularizers for structured sparsity.

Tight convex relaxations for sparse matrix factorization.

Some matrix-inequalities and metrization of matric-space.