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ABSTRACT
In this paper, a novel methodology is proposed to predict
the semantic meaning of a set of places extracted from loca-
tion data. A selection of relevant feature families is proposed
on the basis of the information collected from users’ mobiles
phone, whereas the multiclass classificacion problem is ad-
dressed by a set of smart binary classifiers. Three different
evaluation rules are used: Weighted Voting-based, Error-
Correcting Output Codes-based, and the novel Multicoded
Class-based. Experiments show the good performance of
the methods proposed and the interesting properties of the
novel Multicoded class-based evaluation rule.

1. INTRODUCTION
In the last years, the problem of obtaining the coordinates
(latitude and longitude) of the places where people go or
spend time has been attracted the attention of many re-
searchers [5, 7, 9, 10, 12]. But for many applications, ob-
taining those coordinates is not enough and semantic in-
formation is somehow needed, for instance, the information
related to the place category (restaurant, home, work, place
to play indoor sports, etc.).

In this paper, a novel methodology is proposed to predict the
semantic meaning of a set of places extracted from location
data provided by the Nokia Mobile Data Challenge (NMDC)
for the Semantic place prediction task [8]. Table 1 shows
the 10 labels of the problem and their semantic meaning.
Input data include: the sequence of visits to places where
a set of 79 users have stayed for a while (approximately
there are 5 labeled places per user), and the information
collected from the users’ mobile phones [8]. Input data do
not include geographic coordinates of the places to protect
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Table 1: Labels, semantic meaning and number of
labeled prototypes in each class.

Label Semantic meaning No. prototypes

1 Home 84
2 Home of a friend 46
3 Work 102
4 Transport related 23
5 Work of a friend 9
6 Indoor sports 25
7 Outdoor sports 14
8 Bar, Restaurant 11
9 Shop 17
10 Holidays resort 5

users’ privacy. Thus, given a training data set that includes
labeled data, the objective of this work is to obtain an as
accurate as possible classification technique that would be
able to obtain the semantic meaning of the places visited
from another set of users (test set). Training data provide
both labeled places and unlabeled places. In this paper, only
labeled places have been used.

In our approach, we propose a set of feature families (Sec-
tion 2) to characterize a place based on the information col-
lected from users’ mobile phones. In addition, the multiclass
classification problem has been divided into a set of 2-class
classification problems, producing an ensemble of smart bi-
nary classifiers. The term smart refers that, for each binary
classification problem, the best combination of features and
the best classifier type (between k-Nearest Neighbor (kNN)
[1] and Support Vector Machine (SVM) [2]) has been used
to train each smart binary classifier. Three different eval-
uation techniques have been proposed to infer the label of
each test sample from the results obtained by all the binary
classifiers: Weighted Voting-based (WV), Error-Correcting
Output Codes-based (ECOC) [3, 4], and the novel Multi-
coded class-based (McC).

Summarizing, the main contributions of this paper are as
follows:

1. A novel set of features for a semantic characterization
of places is proposed. It is based on the information
collected from users’ mobile phones.

2. A novel methodology based on the use of smart bi-



Table 2: Name of the families and number of fea-
tures for each one.

Family Name Based on No. features

Γtime Time 288
Γbt Bluetooth 288

Γbt+ Bluetooth 2
Γprofile Profile 7
Γbattery Battery 2

Γav Accelerometer 288
Γav+ Accelerometer 2
Γvel Accelerometer 288

Γvel+ Accelerometer 2
Γcall Call log 6
Γsms Sms log 2
Γwlan Wlan 2

nary classifiers is also proposed to solve the multiclass
classification problem.

3. We introduce the novel Multicoded Class-based (McC)
multiclass evaluation rule in combination with the also
proposed smart binary classifiers methodology. Our
proposals outperform the traditional multiclass classi-
fication techniques as well as other well-known alter-
natives of solving the multiclass problem as ECOCs or
Weighted voting.

2. THE SET OF FEATURE FAMILIES
In this work, information collected from users’ mobile phones
has been divided into several families in order to characterize
the different place categories. Each family is understood as a
vector of several features obtained from the same source. Let
us name F to the set of 12 families created to characterize
each place. Table 2 shows the name of the families and the
number of features included in each one.

It is important to note that only those data detected or
collected when the user stayed in the place are used to char-
acterize that particular place.

2.1 Time-based features
People tend to stay or visit places at specific times of the
day/week. For instance, it is logical to suppose that users
should be at home at night, do not work during the weekends
or go to the restaurant at lunch time. Therefore, time-based
features can be important to discriminate among classes.

For each place, the input data provide the time periods when
the user has stayed in a particular place [8]. Using this infor-
mation, the probability that the user has stayed in a partic-
ular place at a particular time moment has been estimated.
To this end, the day has been split into 144 time periods of
10 minutes each. In addition, we estimated separately the
probability of staying in places during the working days in
contrast to the weekends. The final time-based feature, call
Γtime, has 288 elements, first 144 from working days and
last 144 from weekends. Families Γbt, Γav and Γvel use the
same time periods than Γtime.

2.2 Bluetooth-based features

From raw bluetooth data, two families of features have been
estimated, Γbt and Γbt+. The first one, is a vector of 288
features where each one is the average of the number of blue-
tooth devices detected by the user’s phone in a particular
time period. The second one, is a vector of 2 features: the
average of the number of bluetooth devices detected by the
user during a complete working day and the same estimation
for the weekends.

2.3 Profile-based features
Phone operating system provides 7 different user profiles.
The family Γprofile encodes the percentage of time that each
profile was selected when the user stayed in a place.

2.4 Battery-based features
Γbattery family has two features that encode the percentage
of time that the phone has been charging the battery and
the percentage of time that it has not been charging.

2.5 Accelerometer-based features
Four families have been derived from accelerometer raw data.
Γav and Γvel of a particular time period are the average
avdelta1 and the average velocity respectively. Γav+ and
Γvel+ resume the data using only two features, the first one
averages Γav and Γvel features for the working days whereas
the second one does the same for the weekends.

2.6 Call log-based features
Γcall has 6 features: average number of incoming calls, av-
erage number of incoming calls to numbers included in the
address book, average duration of incoming calls, and the
same three for outcoming calls.

2.7 Sms log-based features
Γsms has two features: average number of incoming short
messages (sms) and the same for outcoming ones.

2.8 Wlan-based features
Γwlan has two features: the average number of wlan devices
and the average number of open wlan devices detected by
the phone.

3. THE PROPOSED METHOD
One of the traditional ways of solving a multiclass classifica-
tion problem is to use a multiclass classifier. An alternative
way consists on dividing the problem into a set of binary
classification problems. Let us define φp,n = {δ1, . . . , δD}
as the set of all possible binary problems (D) that can be
formulated within a 10-class classification problem, where p
and n are the number of positive and negative classes, re-
spectively, involved in each binary problem. For instance,
φ1,1 (also known as one-versus-one) and φ1,2 are composed
by the following binary problems:

φ1,1 = {[{1}, {2}], [{1}, {3}], . . . , [{9}, {10}]}
φ1,2 = {[{1}, {2, 3}], [{1}, {2, 4}], . . . , [{8}, {9, 10}]}

1avdelta measure is the given value that summarizes the
activity of the accelerometer during a time period, see [8]
for details of how it is worked out.
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Figure 1: Example of the proposed classification
scheme using a set of smart binary classifiers. In
this case, there are 4 classes, and the set φ1,1 is used
(D = 6). For a test sample pj the output vector is ob-
tained (for instance) as Hj = {+1,+1,+1,−1,−1,+1}.

The expression δi = [{ai
1, . . . , a

i
p}, {bi1, . . . , bin}], where i ∈

[1, . . . , D], indicates the positive (labeled as +1) and neg-
ative (labeled as −1) classes that define a binary problem,
being {ai

1, . . . , a
i
p} and {bi1, . . . , bin} the set of p positive and

n negative classes, respectively, involved in i-th binary prob-
lem. It is worth noticing that those classes that are used
together are merged as if they were a single class. Also note
that the sets φp,n and φn,p are equivalent.

For each binary problem δi, an evaluation score have been
estimated for all combinations of the families included in the
set F and for each binary classifier type. Each family has its
own feature vector and, concatenating two or more of these
vectors, new features are created that can be used for clas-
sifying the different places. For instance, combining Γtime

and Γbt features, a new feature vector with 576 elements is
created (i.e. 288 from Γtime and 288 from Γbt).

The objective is to select the set of features and the binary
classifier type that achieve the best performance for each
binary classifier. A 2-fold evaluation strategy, has been used
in this step.

Each binary problem δi is evaluated by the score αi =
TP (i)+TN(i)

2
, where TP (i) and TN(i) are respectively the

true positive rate and the true negative rate of the δi binary
problem. Accuracy has not been used as score since some
binary problems (e.g. [{3}, {10}]) are strongly unbalanced.
We look for binary classifiers able to correctly classify sam-
ples belonging to both parts of the binary problem. The
final classifier is an ensemble of D smart binary classifiers.

Test samples are now evaluated to obtain the desired la-
bel in the set [1, . . . , 10]. For each test sample ρj , (where
j ∈ [1, . . . , Q] and Q is the number of test samples), a
vector Hj of D labels in the set [+1,−1] are obtained us-
ing Hj(i) = Φ(δi, ρj),∀i, i.e. evaluating the test sample
using the decision function Φ(δi, ρj) of each binary prob-
lem δi. Figure 1 shows an illustrative example of the pro-
posed scheme for a hypothetical classification problem with
4 classes.

Three evaluation rules have been proposed to obtain the pre-
dicted label from vector Hj : Weighted Voting-based (WV),
Error-Correcting Output Codes-based (ECOC) and Multi-
coded class-based (McC). They are explained in the follow-
ing sections.

3.1 Weighted Voting-based (WV) rule
Let us define V + and V − (V +, V − ∈ N10, since 10 are the
number of classes in our problem) as two vectors where the
votes of each binary classifier are going to be accumulated.
If Hj(i) is positive, then a positive vote is accumulated for
all classes belonging to {ai

1, . . . , a
i
p}. At the same time, a

negative vote is accumulated for all classes belonging to
{bi1, . . . , bin}. If Hj(i) is negative, the procedure is the oppo-
site. The next step is to look for the maximum in (V +−V −).
The most probable class for the test sample is the one related
with the position giving the maximum in (V + − V −). The
amount of the votes are determined by TP (i) and TN(i),
obtained for each binary classification problem.

According to the example shown at Figure 1 and assum-
ing for simplicity that TP (i) = 1 and TN(i) = 1, ∀i (i.e.
all binary classifiers having the same weight), then V + =
(3, 0, 2, 1) and V − = (0, 3, 1, 2) (V +, V − ∈ N4, since a 4-
classes classification problem has been used in this example
for simplicity). For instance, V +(1) = 3 since 3 binary clas-
sifiers (δ1, δ2 and δ3) score +1 when the class 1 belongs to
the positive part of the binary problem (i.e to {ai

1, . . . , a
i
p}).

V −(1) = 0 since there are not binary classifiers scoring −1
when the class 1 belongs to the negative part of the binary
problem (i.e. to {bi1, . . . , bin}). Similarily, V +(3) = 2 since 1
binary classifier (δ6) scores +1 when the class 3 belongs to
the positive part of the binary problem and 1 binary classi-
fier (δ4) scores −1 when the class 3 belongs to the negative
part. V −(3) = 1 since 1 binary classifier (δ2) scores −1
when the class 3 belongs to the negative part of the binary
problem.

The label estimated for the test sample pj is determined by
the position of the maximum of (V +−V −) = (3,−3, 1,−1),
i.e. in this example, the label of the first class is the one
that will be selected for the j − th test sample.

3.2 Error-Correcting Output Codes-based (ECOC)
rule

ECOC techniques [3, 4] were designed as an alternative
way of combining binary problems in order to deal with
the multi-class case. Given a set on N classes to be learnt
(N = 10 in our problem), in a binary symbol-based ECOC
framework, D different bi-partitions (groups of classes) are
formed, andD binary problems over the partitions are trained.
As a result, a codeword of lengthD is obtained for each class,
where each position of the code corresponds to a response of
a given dichotomizer (coded by +1 or −1 according to their
class set membership).

During the decoding process, applying the D binary classi-
fiers, a code x (Hj in our terminology) is obtained for each
data sample in the test set. This code x is compared to the
codewords of each class, being assigned to the class with the
closest codeword. In the ternary symbol-based ECOC, the
code symbols are in the set {+1,−1, 0}. In this case, the
symbol zero means that a particular class is not considered
for a given classifier.

In our work, a ternary symbol-based ECOC has been used,
using the set of binary problems φp,n as dichotomizers. Fig-
ure 2 shows an illustrative example of a ternary symbol-
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Figure 2: Example of a ternary symbol-based ECOC
for a classification problem with 4 classes. Rows
show the codification of each class and columns the
D = 6 dichotimizers. Each position of the code is
coded by +1 (blue), −1 (red) or 0 (gray), according
to their class set membership. Last row shows the
decodification (Hj) for the test sample pj. Circles
show the resulting distance between each code and
the test sample. In this example, the number of
equal symbols has been used as distance. The label
of the first class is the one that will be selected for
the j − th test sample.

based ECOC for a hypothetical classification problem with
4 classes.

3.3 Multicoded Class-based (McC) rule
In the original ECOC method, a code is obtained for each
data sample in the test set applying the D binary classifiers.
We propose a new evaluation rule which consists on also
assigning a code to the training samples by applying the
D binary classifiers. Thus, both the test samples and the
training samples will be expressed in the code space, trans-
forming the set of smart binary classifiers into a multiclass
problem with the original 10 classes. The next step is to
apply a multiclass classifier to obtain the labels in the set
[1, . . . , 10].

4. EXPERIMENTS AND RESULTS
4.1 Experiments set-up
The input database provided by the NMDC consist on a
set of approximately 5 labeled places by user. In particular
there are 336 labeled places. The number of places is not
79x5=395 since some users have less than 5 labeled places. A
2-fold cross validation strategy has been selected to evaluate
the different classifiers that will be explain along this section.
Therefore the input data has been divided in two sets, the
first one setA with 171 samples and the second one setB
with the remaining 165. The prototypes included in each
set have carefully been chosen to maintain a similar number
of prototypes of each class in each set.

KNN and SVM multiclass and 2-class classifiers are used
along this work. On the one hand, using the well-known
k-nearest neighbor method [1], each new sample is classified
by calculating the distance to the k-nearest training samples.

The class label of the new sample is determined by using a
majority-voting scheme. On the other hand, SVM [2] uses a
kernel to transform the original data in a transformed space
when a linear classifier is applied.

In this work the LIBSVM package [6] has been used, which
supports both 2-class and multiclass classification. The ker-
nel used has been the Radial Basis Function (RBF) both for
2-class and multiclass classification. In SVM, it is not known
beforehand which parameters are best for a given problem,
consequenlty an estimation of the parameters must be done.
For this purpose, a ”grid-search” on parameters C and σ has
been performed using cross validation. Various pairs of C
and σ values (using exponentially growing) have been tried
and the one with the best score has been picked. In addi-
tion, prtools software2 [11] has been used both for Knn and
for the rest of classifiers used in this work.

4.2 Baseline
In order to obtain a baseline classification, all the possi-
ble combinations of the families from set F , that is 4095
combinations, are tested in order to find the best space for
discriminating among them. For each combination, a 2-fold
evaluation procedure is performed to obtain the accuracy
(number of well classified test samples divided by the total
number of test samples) of the classifier. The best combina-
tion is the one with higher accuracy. The same procedure
has been performed using different types of classifiers.

Table 3 shows the results obtained in terms of accuracy for
the baseline multiclass classification problem, using several
multiclass classifier types. It shows only the accuracy of the
best combination of features for each classifier type. SVM
multiclass classifier is the one that obtains better accuracy.
The feature space in this case, has been obtained by con-
catenating the families Γtime, Γbt, Γbt+, Γprofile, Γvel and
Γwlan, producing a vector of 875 elements.

4.3 Proposed methods
Table 4 shows the results obtained in terms of accuracy for
the proposed method applying the three evaluation rules.
Three sets of binary problems have been tested: φ1,1 (D =
45), φ1,2 (D = 360) and φ1,1 ∪ φ1,2 (D = 405). Each smart
binary classifier has been evaluated using the 1NN and the
SVM 2-class classifiers.

In the ECOC-based rule, a Manhattan distance has been
used to compare the code of a test sample with the code-
words of each class.

In McC rule, a SVM multiclass classifier has been used to
obtain the labels in the code space.

In addition, a new method that consists on combining the
results of the baseline technique with the three results ob-
tained using the proposed method (one for each evaluation
rule) is also proposed. In this ensemble, the class label of test
samples are determined by using a majority-voting scheme.

4.4 Discussion
2http://www.prtools.org



Table 3: Accuracy of the multiclass classification
problem (baseline).

Classifier 1NN SVM Parzen Binary decision tree
Accuracy 59.86 65.82 61.67 54.10

Table 4: Accuracy of the proposed method and the
final ensemble

φ1,1 φ1,2 φ1,1 ∪ φ1,2

VW-based rule 66.70 71.16 70.88
ECOC-based rule 66.70 70.56 70.57
McC-based rule 67.35 71.19 71.17
Final ensemble 67.31 72.96 73.26

From the results shown at Tables 3 and 4 we would like to
stress the following ideas:

• To divide the multiclass problem into a set of smart
binary problems improves the accuracy of the classifi-
cation. The three evaluation rules obtain quite similar
results, being the McC-based rule the best one.

• The use of the set of binary problems φ1,2 instead of
the traditional φ1,1 improves the accuracy for all meth-
ods. However, when the union of both sets has been
used, the accuracy does not always outperform the case
when only the set φ1,2 has been used. This means that
the use of the φ1,1 does not always introduce new valu-
able information to improve the accuracy.

• The final ensemble, which is a combination of the pre-
dictions of the previous methods, outperforms the re-
sults obtained when the sets φ1,2 and φ1,1 ∪ φ1,2 are
used, obtaining the best result in this work, with
an accuracy of 73.26%.

• Figure 3 shows the confusion matrix obtained by using
the final ensemble method and the set φ1,1 ∪ φ1,2. In
general, the method provides excellent performance on
Home (label 1) and Work (label 3) classes. It is worth
noticing that Home of a friend (label 2) and Work of
a friend (label 5) classes are sometimes confused with
the Home and Work classes, respectively. The method
has low accuracy for the classes Outdoor sports (label
7) and Bar, Restaurant (label 8), while obtaining good
performance recognizing prototypes from the classes
Transport related (label 4), Indoor sports (label 6) and
Holidays resort (label 10).

• If we look the labels predicted by the baseline and the 3
evaluation rules of our proposed method (not shown in
this paper), we realize that the labels predicted by the
baseline method and the McC-based rule are quite sim-
ilar (but being the accuracy when using the McC-based
rule significantly better) and the labels predicted by
VW-based and ECOC-based rules are also quite simi-
lar. Note that the baseline method and the McC-based
rule solve the multiclass problems by using a multi-
class classifier (SVM in both cases) where VW-based
and ECOC-based rules solve the multiclass problem
by dividing the problem into a set of binary problems.
Then, we can conclude that the proposed McC-based
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Figure 3: Confusion matrix obtained by using the
final ensemble method and the set φ1,1 ∪ φ1,2. For a
better visualization of this figure, It is recommended
to read the color version of the article.

is an interesting alternative to directly solve the multi-
class problem that produces good accuracy results on
contrast to other traditional ways of solving the mul-
ticlass classification problem.

• In ECOC-based rule all the training samples from the
same class are represented using the same codeword,
i.e. they fall in the same place on the decision frontier
of the classifier. In contrast, in the proposed McC-
based rule, each class can be represented using differ-
ent codewords, therefore it improves how each class is
represented in the feature space, giving a better versa-
tility on obtaining the label of the test samples.

• In the proposed method, when the VW-based and ECOC-
based evaluation rules have been used, the multiclass
classification problem is transformed by dividing the
problem into a set of smart binary classification prob-
lems, therefore each individual binary problem has a
decision frontier easier to be estimated in contract to
the multiclass problem. However, this simplification
implies that the uncertainty is transferred to the WV-
based or to the ECOC-based systems. McC-based rule
solves this situation acting as a multiclass classifier
significantly improving traditional multiclass classifiers
(baseline) and slightly improving to two popular alter-
natives to solve the multiclass classification problem as
the VW-based and ECOC-based evaluation strategies.

Figure 4 shows the most important feature families, i.e. the
ones that have been most frequently selected in by the smart
binary classifiers. In general, Γtime, Γwlan, Γcall, Γprofile

and Γsms are the most important ones. On the other hand,
the 1NN classifier has been selected as the binary classifier
at the 81% of the times, where the SVM one, only at 19%.

5. CONCLUSIONS
In this paper, a novel methodology has been proposed to
predict the semantic meaning of a set of places extracted
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from location data provided by the Nokia Mobile Data Chal-
lenge for the Semantic place prediction task [8]. A novel set
of feature families have been proposed on the basis of the
information collected from users’ mobile phones. Different
classification strategies to deal with the multiclass problem
have been tested. Experiments have shown the good perfor-
mance of the method proposed and the interesting properties
of the novel Multicoded Class-based evaluation rule. Future
work will focus on obtaining additional features from raw
data, on improving decision frontiers of the binary problems
and on studying with more detail the interesting properties
arisen from the experiments performed with the novel McC-
based classification technique.
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