How to detect faces?

Sébastien MARCEL
Yann RODRIGUEZ
Introduction

- First step before:
 - face tracking
 - face recognition
 - facial expression recognition
 - gesture recognition

- Related projects at IDIAP
 - BANCA, M4, COST
 - IM2.SA, IM2.ACP
Where is the face?

- Perfect conditions:
 - uniform background
 - uniform lightning
Where is the face?

- Non-uniform lightning:
Where is the face?

- Low quality images:
Where are the faces?

- Scans:
 - gray level images
 - various quality
Where are the faces?

- Multiple faces (outdoor):
Where are the faces?

- Multiple faces (indoor):
Where are the faces?

- Multiple scales:
In-plane vs Out-of-plane rotations

- In-plane rotations:
 - rotation in the plane of the image
 - 1 degree of freedom
- Out-of-plane rotations:
 - rotation out-of the plane of the image
 - 2 degrees of freedom
Extreme case :-}
Appearance based models

- 1 model for each appearance:
 - frontal
 - profile/half profile
 - up/down
Face modeling

- Ideal detection:
Face modeling

- Determining the face bounding box:
 - facial measures [1]
 - facial landmarks (eyes)

- Useful for:
 - database collection
 - evaluation

[1] “Anthropometry of the Head and Face” L.G. Farkas
Face detection in 2 stages

- Scanning and classification
 - Feature vector
 - Classifier: MLP or weak classifiers
 - Decision
 - Face
 - Non Face

- Merging overlapped detections
False detections

- Number of tests: up to 1 million
- Targeted performance: $< 10^{-7}$ false detection rate
Using a MLP as classifier

- The input size of a MLP is fixed
- Scan a fixed window:
 - at any scale
 - at any rotation
 - at any location
- Low false detections
- Slow: 10s/image
A weighted sum of weak classifiers

- Using input features which can be computed at any scale:
 - pixel based weak classifiers
 - Haar-like based weak classifiers
- Fast: 100ms/image
- Higher false detections than MLP
Weak classifiers

- Weak classifier: \(h_t(x) \)
 - \(f_t \): input feature
 - \(\theta_t \): threshold

- Weighted sum of weak classifiers:
 \[
g(x) = \sum_t \alpha_t h_t(x)
\]

- Boosting the performance of weak classifiers by combining them iteratively

- For more details see S. Bengio lectures
Pixel based weak classifiers

- The features are just the pixels of the image:

- Each weak classifier considers 1 pixel of the image x:

$$g(x) = \sum_t \alpha_t h_t(x)$$
Haar-like based weak classifiers

Haar-like basis functions:

Applying all masks at any scales and positions:

$g(x) = \sum_t \alpha_t h_t(x)$

Feature vector dimension between 1000 and 20000
Haar-like based weak classifiers

- AdaBoost selects a mask at a given position and size:
Def: The point \((x, y) \) of the integral image is the sum of all the pixels in the upper-left corner of the original image.

Can be computed efficiently in 1 pass.
Integral Image (2/2)

- The sum of pixels in D is $P_4 + P_1 - (P_2 + P_3)$

- Haar-like features are very fast to compute
Examples of detections
Demonstration

- Face detection in meetings:
 - FGnet dataset
 - video: 720x576 25fps
 - each frame is processed individually with Haar-like based weak classifiers
Conclusion

- Face detection software:
 - available to anybody at IDIAP
 - to process still images or videos
 - easy to modify
 - face classifiers are in Torch3

- Future work:
 - out-of-plane face models are missing
 - building cascade of weak-classifiers
 - evaluation on benchmark databases