Cognitive Vision for Cognitive Systems

Barbara Caputo, Marco Fornoni
Idiap Research Institute
http://www.idiap.ch/~bcaputo
http://www.idiap.ch/~mfornoni
bcaputo@idiap.ch
mfornoni@idiap.ch
Object Recognition --the robot vision way
What is an Object for a Robot?

- A visual landmark for helping localization, mapping and navigation
- An obstacle to be avoided
- Something to grasp/manipulate
Objects as Visual Landmarks
Object = Landmark
Objects as Visual Landmarks

- Objects are used to enrich the map of the environment
- Objects are used to facilitate localization in an environment
- Objects can be referred to/constitute a goal when navigating in an environment

almost no need for 3D information.... we are back to appearance based!
Key differences

- Static images versus image sequences
- Training time and memory not relevant versus real time and memory bounded relevant
- Robustness to changes in illumination, scale, viewpoint is crucial
Layers of Semantic Representations
Layers of Semantic Representations
lots of things to do.. you need to act fast!

- Approach I: rely on real-time feature detection and matching (most of work on SLAM as opposed of recognition of objects, see for instance work by Andrew Davison www.doc.ic.ac.uk/~ajd/

- Approach II: rely on attentional mechanism/contextual information
• Approach II: rely on attentional mechanism/ contextual information

[Choi & Christensen, IROS 2009]
- Two stage object recognition approach

- Stage I: identify salient regions in the scene using multiple cues

- Stage II: identify objects inside the salient regions

(a) Bottle

(b) Can

(c) Mug

(d) Paper cup
• Object likelihood model: the key idea is that an object’s position follows predictable patterns

• Object positions collected from a public database, then smoothed with Gaussian filter, then projected on y-axis

• The likelihood for each object are the values presenting a uniform distribution, projected on the x-axis
• Object likelihood model: the key idea is that an object’s position follows predictable patterns

• Object positions collected from a public database, then smoothed with Gaussian filter, then projected on y-axis

• The likelihood for each object are the values presenting a uniform distribution, projected on the x-axis
- Object templates: composed of local stumps (image patch on the left) and spatial masks (on the right). From top to bottom: bottle, can, mug and paper cup
Salient Regions | Whole Detection | SRC+LH Detection

Can
Take home message

• appearance-based methods are useful for detecting landmark objects

• the system resources are the key factor (speed, memory)

• contextual information/attention mechanisms/real-time visual recognition algorithms
15 min break!
Manipulable Objects and Affordances
The Concept of Affordances

- Introduced J.J. Gibson to explain
 - how inherent “values” and “meanings” of things in the environment can be directly perceived, and
 - how this information can be linked to the action possibilities offered to the organism by the environment.
- Gibson argued that an organism and its environment complement each other and that studies on the organism should be conducted in its natural environment rather than in isolation.
- An elusive, yet confusing notion that has influenced a wide range of fields ranging from Human-Computer Interaction and Neuroscience, to Robotics.
Affordance in Different Fields

- **Ecological Psychology**
 - Warren's (1984) stair-climbing experiments
 - affordances are perceived in body-scaled metrics.

- **Neuroscience**
 - Canonical and Mirror neurons, that are used in motor actions, are also observed to be active during perception.

- **Human-Computer Interaction**
 - How "everyday things" can be designed such that the user can easily infer what they afford. (D. Norman; 1998).
 - Identify the visual clues that make the affordances of the tools apparent.
Affordances in Robotics

- The concept of affordances were also used as guiding principles for the design of behaviors in robotic systems (Duchon et al.; 1998, Murphy; 1999).
- Affordance learning is referred to as the learning of the consequences of a certain action in a given situation (Fitzpatrick et al.; 2003, Stoytchev; 2005a, 2005b).
 - These studies also relate these properties to the consequences in terms of the internal values of the agent, rather than changes in the environment.
Autonomous Robotics

- The concept of affordances and behavior-based robotics have emerged in similar ways, objecting to the then dominant paradigms in their fields.

- Contemporary view: the meaning of objects are created internally with further "mental calculation" of the otherwise meaningless perceptual data.
- Gibson’s view: affordances are directly perceivable (a.k.a. direct perception) by the organism, thus the meaning of the objects in the environment are directly apparent to the agent acting in it.
- Contemporary view: Robot’s perception should build and maintain a generic world model of the environment, over which the robot can make inferences.
- Brooks’ view: “The world is its own best model” and there is no need for internal representations. The robot’s behaviors should directly connect perception to action, and cognition will emerge.
Autonomous robotics

- The concept of affordances has mostly been used as a source of inspiration.

- Most of the studies preferred to
 - refer only to J. J. Gibson’s writings,
 - ignore modern discussions on the concept.

- Hence,
 - only certain aspects of the theory have been used, and
 - no attempts were made to consider the implications of the whole theory toward autonomous robot control.
Turvey's formalization (1992)

- According to Turvey:
 - Affordances are dispositional properties of the environment
 - Effectivities are dispositional properties of the animal
 - When these two meet in space and time they get actualized
Stoffregen's formalization (2003)

- According to Stoffregen affordances *can not* be defined as properties of the environment only.
- He proposes that,
 - Affordances are properties of the animal-environment system
 - They are emergent properties that do not inhere in either the environment or the animal.
Chemero's formalization (2003)

- Chemero also claims that affordances must be defined at the animal-environment system scale.
- He proposed that:
 - Affordances are relations between the abilities of organisms and features of the environment.
Steedman's formalization (2002)

- Steedman skipped the perceptual aspect of affordances and associated affordances with planning, and linguistic capabilities.
- He claimed that a door is linked with the actions of “pushing” and “going-through”, and the preconditions and consequences of applying these actions to the door.
Three perspectives to view affordances

- Affordances are relations and can be viewed from three (not one!) perspectives.
- Agent perspective:
 - I perceive pushability affordance.
- Observer perspective:
 - There is pushability affordance in the dog-ball system.
- Environmental perspective:
 - I offer pushability (to a dog).

(adapted from Erich Rome’s slice depicting a similar scene)
Şahin et al.'s formalization (2007)

Definition: An affordance is an acquired relation between a behavior of an agent and an entity in the environment such that the application of the behavior on the entity generates a certain effect.
The robot applied its lift behavior on the can and obtained the lifted effect.

Can: The perceptual representation of the can as seen by the robot

Lift: The behavior executed by the robot

Lifted: The effect of the behavior on the environment as perceived by the robot.
Implications for Robot Control

- Affordances can be viewed from three different perspectives: namely, agent, observer and environmental.
 - Although only the agent and observer perspectives are relevant for robotics.
- Affordances (agent and observer) are relations that reside inside the agent.
 - Does not contradict the view that affordances are relation within the agent-environment system.
- Affordances encode “general relations” pertaining to the agent-environment interaction.
 - A relation such as “the-red-ball-on-my-table is notrollable (since it is glued to the table)” does not have any predictive value, and cannot be considered as an affordance.
Affordances are acquired relations

- Affordances are acquired through the interaction of the organism with its environment:
 - Acquisition through evolution -> innate affordances (J. Norman; 2001)
 - Acquisition through learning -> learned affordances (E.J. Gibson; 2000)
 - Acquisition through design -> designed affordances (Murphy; 1999)
- Acquired relations are automatically in “body-scaled” metrics.
Affordances provide a framework for symbol formation

- The problem of how symbols are related to the raw sensory-motor perception of the robot is known as the symbol grounding problem (Harnad; 1990).
- Sun (2000) argued that symbols should be “formed in relation to the experience of agents, through their perceptual/motor apparatuses, in their world and linked to their goals and actions”.
- The formation of equivalence classes are triggered by the formation of affordance relations. Hence symbol formation is not an isolated process.
Visuo-Motor Object Modeling and Recognition
• What

• A theoretical framework for **multi-modal learning** able to combine an active perceptual channel (motor data) with a passive one (visual data)
Take home message

- How
 - building a mapping function between the two channels via **regression**
Take home message

• Why

 • *multi-modal object models*, *vision-based grasp priming for embodied agents*, *knowledge transfer across modalities*, affordance-based object categorization, from form to function......
Motivations & Background

- We draw inspiration from the mirror neurons [Rizzolati96-04]
 - they are clusters of neural cells which fire if an agent grasps an object, or sees that object, or sees another agent grasping the same object
- We follow a path similar to that laid out in [Metta06, Castellini07] based on a PAM (Perception to Action Map)
Theoretical Framework

- Visual data
- Motor data

Learning from examples

Classification
Recognition
Prediction...
Theoretical Framework

- Visual data
- Motor data

Regression model

Classification
Recognition
Prediction...
Theoretical Framework

- Motor data
- Objects description
- Regression model
- Classification Recognition Prediction...
Theoretical Framework

- Objects description
- Regression model
- Grasps description

Classification
Recognition
Prediction...

...
Theoretical Framework

- Objects description
- Regression model
- Grasps description
Theoretical Framework

Objects description → Regression model → Grasps description

Objects
- Duck
- Ball
- Cylinder

Grasps
Vision Unit

- BS
 - SIFT descriptors
 - ... K-means ...
 - SIFT descriptors
 - SIFT descriptors
 - ... K-means ...
 - SIFT descriptors
 - SIFT descriptors

- NN
 - Frequency histogram
 - Visual vocabulary
Learning the mapping

The goal is *not* to memorize but to **generalize**, i.e. to predict

Given a set of training data

\[
\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}
\]

find a function

\[f(x) \sim y\]

such that **f is a good predictor on new data** as well as on the given dataset
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_i^1, \ldots, y_i^d) \]
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_i^1, \ldots, y_i^d) \]

The kernel function defines similarity between input points and correlation among output components.

\[\Gamma : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^{d \times d} \]
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_i^1, \ldots, y_i^d) \]

The kernel function defines similarity between input points and correlation among output components

\[\Gamma : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^{d \times d} \]

The estimator is a linear combination of the kernel function evaluated at the training points

\[f_z^\lambda(x) = \sum_{i=1}^{n} \Gamma(x, x_i) c_i, \quad c_i \in \mathbb{R}^T \]
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_i^1, \ldots, y_i^d) \]

The kernel function defines similarity between input points and correlation among output components.

\[\Gamma : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^{d \times d} \]

The estimator is a linear combination of the kernel function evaluated at the training points.

\[f^\lambda_z(x) = \sum_{i=1}^{n} \Gamma(x, x_i)c_i, \quad c_i \in \mathbb{R}^T \]

The estimator is found minimizing

\[\mathcal{E}[f] + \lambda \|f\|^2_{\Gamma} \]
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_{i1}, \ldots, y_{id}) \]

The kernel function defines similarity between input points and correlation among output components.

\[\Gamma : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^{d \times d} \]

The estimator is a linear combination of the kernel function evaluated at the training points.

\[f^\lambda(x) = \sum_{i=1}^{n} \Gamma(x, x_i)c_i, \quad c_i \in \mathbb{R}^T \]

The estimator is found minimizing

\[\mathcal{E}[f] + \lambda \| f \|_1^2 \]

Empirical Risk Error on the training data

\[\mathcal{E}_n[f] = \frac{1}{n} \sum_{i=1}^{n} \| y_i - f(x_i) \|_d^2 \]
Learning the Mapping: Kernel Methods (fancy stuff)

\[y_i = (y_i^1, \ldots, y_i^d) \]

The kernel function defines similarity between input points and correlation among output components.

\[\Gamma : \mathbb{R}^p \times \mathbb{R}^p \rightarrow \mathbb{R}^{d \times d} \]

The estimator is a linear combination of the kernel function evaluated at the training points.

\[f_z(x) = \sum_{i=1}^{n} \Gamma(x, x_i)c_i, \quad c_i \in \mathbb{R}^T \]

The estimator is found minimizing the Empirical Risk Error on the training data.

\[\mathcal{E}[f] + \lambda \|f\|_{\mathcal{H}}^2 \quad \text{Smoothness term} \]

\[\mathcal{E}_n[f] = \frac{1}{n} \sum_{i=1}^{n} \|y_i - f(x_i)\|_d^2 \]
Learning the Mapping: Kernel Methods (fancy stuff)

• **Proof-of concept result:** assuming a 1-1 mapping between object and grasp posture, the 22-valued motor descriptors can be estimated accurately from the visual feature of the corresponding object

• **Extension to many-to-many:**mmmmmmmm......
Learning the Mapping: ANN (not so fancy stuff)

- 200 inputs (dim of visual features), 22 output (dim of grasp posture descriptor)

- 1 hidden layer (20 neurons, log-sigmoid transfer function, gradient backpropagation)

- instead of modeling a many-to-many correspondence, we define an archetypal grasp for each object, i.e. a mixture of the possible grasps

- amazingly it works!
The CONTACT Visuo-Motor Grasping DataBase
The CONTACT VMG DataBase

- Immersion CyberGlove with 22-sensors (hand posture), ascension Flock-Of-Birds magnetic tracker on the wrist (position and speed) and a force sensing resistor glued to the thumb (instant of contact)
The CONTACT VMG DataBase

- 20 human subjects, 7 objects, 5 grasp types
- each subject asked to repeat the same grasp type 20 times
- data recorded with two cameras (visual data) and CyberGlove, for a total of 5200 grasping acts
The CONTACT VMG DataBase

- pen
- lego brick
- ball
- tape
- hammer
- pig
- duck

Object

- pinch
- spherica
- flat
- cylindric
- tripodal

Grasp type

Experimental setup
App I: Multi-Modal Object Recognition

• Goal: to augment visual information about an object with motor information about it, i.e. the way the object can be grasped by a human being
App I: Multi-Modal Object Recognition

• We build an object recognition system on a set of visual and motor features

• Whenever the motor features are not perceived by the system (i.e. the agent is not grasping/manipulating the object in the field of view) we infer them from the visual input

• Motor features are derived from perceived visual features through the mapping function learned during training
App I: Multi-Modal Object Recognition
App I: Multi-Modal Object Recognition
App I: Multi-Modal Object Recognition

Object hypothesis

Visual data

VMM

Visual data
Reconstructed Motor data

VMC

Object classification
App I: Multi-Modal Object Recognition

- Visuo-motor classifier: low-level, mid-level or high-level?

App I: Multi-Modal Object Recognition

Results with real motor data

![Bar chart showing mean accuracy for different conditions: V, M, LOW, MID, HIGH. The chart indicates varying levels of accuracy across these conditions.](image)
App I: Multi-Modal Object Recognition

Results with reconstructed motor data

![Bar chart showing mean accuracy for different modalities: V, M, LOW, MID, HIGH.](chart.png)
App I: Multi-Modal Object Recognition

It Works!

- **Needs to be improved:** visual features, mapping function, motor representation

- **Needs to be added:** dynamic of the grasp, reaction of the object, task, longer/more complex actions, not only manipulable objects,(fill the dots as you wish)

- **Categorization and scaling:** not for google vision, but for robot vision perhaps....
15 min break!
Attention
The Human Ability to Attend
Attention: Its Roots...

Attention: from the Latin “attenti”, from attentus, the past participle of attendere, meaning “to heed”

Descartes (1649): Thus when one wishes to arrest one’s attention so as to consider one object for a certain length of time, this volition keeps the pineal gland tilted towards one side during that time.

Hobbes (1655): While the sense organs are occupied with one object, they cannot be simultaneously be moved by another so that an image of both arises. There cannot therefore be two images of two objects but one put together from the action of both.

Malebranche (1674): Attention is necessary for conserving evidence in our knowledge.

Leibnitz (1765): In order for the mind to become conscious of perceive objects, and therefore for the act of apperception, attention is required.
Typical Scanpath

regardless of the claims of biological plausibility or realism, none of the attention models can replicate such scanpaths
Scanpaths and Object Representation

Reported a connection between the eye movement patterns observed during learning of a visual pattern and the subsequent viewing of that pattern.

During learning, subjects followed a characteristic scanpath. When later presented with the pattern again, subjects usually followed a very similar scanpath for at least the first few fixations.

This suggested that the internal representation of a pattern in memory is a network of features, and thus attention shifts move from feature to feature.
Task and Eye Movements

Yarbus demonstrated how eye movements changed depending on the question asked of the subject:

1. No question asked
2. Judge economic status
3. "What were they doing before the visitor arrived?"
4. "What clothes are they wearing?"
5. "Where are they?"
6. "How long is it since the visitor has seen the family?"
7. Estimate how long the "unexpected visitor" had been away from the family

Each recording lasted 3 minutes
Salience

What's a Feature? What Attracts Attention?
Master Map of Locations (Treisman 1985)
Saliency Map (Koch & Ullman 1985, Itti & Koch 2001)
Activation Map (Wolfe, Cave & Franzel 1999)
Priority Map (Fecteau & Munoz 2006)
What’s a Feature? What Attracts Attention?

Just about everything someone may have studied can be considered a feature or can capture attention

Wolfe presents the kinds of features that humans can detect ‘efficiently’:

- Color
- Orientation
- Curvature
- Texture
- Scale
- Vernier Offset
- Size, Spatial Frequency, and Scale
- Motion
- Shape
- Onset/Offset
- Pictorial Depth Cues
- Stereoscopic Depth

For most, subjects can ‘select’ feature or feature values to attend in advance
Saliency Map

Saliency map - a topographic representation that combines the information from the individual feature maps into one global measure of conspicuity

Point-wise mapping from one map to the other

Can be modulated by higher cortical centres
Master Map of Locations

Attention selects one area at a time, within a master map of locations, thereby retrieving the features linked to the corresponding locations in a number of separable feature maps.
 Activation Map

A topographic representation of the weighted sums of feature map activations. Feature map activations are based on local differences and task demands.
What is Attention?

Attention is the set of mechanisms that optimize/control the search processes inherent in vision.

- **select**: spatial region of interest, temporal window of interest, world/task/object/event model, gaze/viewpoint, best interpretation/response

- **restrict**: task relevant search space pruning, location cues, fixation points, search depth control

- **suppress**: spatial/feature surround inhibition, inhibition of return
Points/Regions of Interest Detection

Used in image/object recognition to provide invariant descriptions of important features and in indexing to "summarize" images for fast querying.

Definition: a point in an image is interesting if it has two main properties: distinctiveness and invariance. This means that a point should be distinguishable from its immediate neighbors and the position as well and the selection of the interesting point should be invariant with respect to the expected geometric and radiometric distortions.

Moravec, H. Rover visual obstacle avoidance, IJCAI, Vancouver, BC, pp. 785-790, 1981
The classic interest point detector
Predictive Methods

Neisser 1967
Mackworth 1978

focuses system resources on image regions where analysis might be most profitable

Appleton-Century-Crofts New York

M. Kelly. Edge detection in pictures by computer using planning, Machine Intell. 6, 397-409 (1971).

Active Vision

In 1985 Ruzena Bajcsy wrote:

“Active sensing is the problem of intelligent control strategies applied to the data acquisition process which will depend on the current state of data interpretation including recognition.”
Why Active?

• to move to fixation point/plane or to track motion
• to see a portion of the visual field otherwise hidden due to occlusion
 - manipulation
 - viewpoint change
• to see a larger portion of the surrounding visual world
 - exploration
• to compensate for spatial non-uniformity of a processing mechanism
 - foveation
• to increase spatial resolution or to focus
 - sensor zoom or observer motion
 - adjust camera depth of field, stereo vergence
• to disambiguate or to eliminate degenerate views
 - induced motion (kinetic depth)
 - lighting changes (photometric stereo)
 - viewpoint change
• to achieve a “pathognomonic” view
 - viewpoint change
• to complete a task
 - multiple fixations
Active vision has cost

- decide that some action is needed
- decide which change to apply in priority sequence
- execute change
- adapt system to new viewpoint
- correspondence between old and new viewpoints

Benefit must outweigh cost (see Tsotsos IJCV 1992)
Active Vision ⊆ Attention

Mechanism	Task
Adaptation	Selection of operating parameters
Inhibitory Beam	Selection of spatial and feature dimensions of interest within visual field
Eye movements	Selection of visual field for detailed analysis
Head/Body Movements	Selection of visual field
Selection of world model	
Selection of objects, events, tasks	

Attention | Active Vision
Computational Models
Itti, Koch & Niebur 1998+

Key ideas:
- a newer implementation of Koch and Ullman’s scheme
- fast and parallel pre-attentive extraction of visual features across 5 spatial maps (for orientation, intensity and color, at six spatial scales)
- features are computed using linear filtering and center-surround structures
- these features form a saliency map
- Winner-Take-All neural network to select the most conspicuous image location
- inhibition-of-return mechanism to generate attentional shifts
- saliency map topographically encodes for the local conspicuity in the visual scene, and controls where the focus of attention is currently deployed
Navalpakkam & Itti - Given any new scene, our model uses the learnt representation of the target object to perform top-down biasing on the attention system such as to render this object more salient by enhancing those features which are characteristic of the object.
Torralba 2003

Key Ideas:
- a model of contextual cueing for attention guidance based on global scene configuration
- shows how statistics of low-level features across the whole image can be used to prime the presence or absence of objects and to predict their location, scale, and appearance before exploring the image
- allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition
Model results on context-driven focus of attention in the task of looking for faces (left) and vegetation (right).
(a) Input image (color is not taken into account). The task is to look for pedestrians.
(b) Bottom-up saliency map.
(c) Context-driven focus of attention. The image region in the shadow is not relevant for the task, and saliency is suppressed.
(d) Points that correspond to the largest salience.
(e) Image regions with the largest salience, including contextual priming.
Lee, Buxton, Feng 2003

Key ideas:
- a quick and dirty preprocessing primes the saliency map
- full resolution saliency map
- saliency is a combination of intermediate level bottom-up
- information (ellipses, symmetry, etc) and top down image
- based bias ("near red" "above blue" etc)

Fig. 4. Example of processing with a natural image containing faces. The model allocates focus of attention to possible target locations. The more task-relevant the target location with respect to the cue, the more likely the location is selected early in the attentional trajectory.
Fig. 5. Comparison with a saliency based model. See (left) trajectory of attention obtained from Itti’s model and (right) trajectory of attention obtained from our model.

Fig. 7. The trajectories of attention guided by different colour cues. See (left) red colour cue “find a man who is wearing a red T-shirt” and (right) blue colour cue “find a man who is carrying a blue plastic bag”.
The Basics...

1. **Defn**: Attention is the set of mechanisms that optimize and control the inherent search processes in vision, sensory perception or cognition

2. The set of mechanisms may be summarized as:
 - **Selection**: spatio-temporal region of interest, world/task/object/event model, gaze/viewpoint, best interpretation/response
 - **Restriction**: task relevant search space pruning, location cues, fixation points, search depth control
 - **Suppression**: spatial/feature surround inhibition, inhibition of return

3. If you wish to use biological motivation for a computational theory then you cannot ignore the task subjects performed, the class of images subjects viewed, and the experimental paradigm that lead to the results you choose to use