
EE-613: - PCA and Probabilistic PCA

Fall 2019

The lab studies the PCA decomposition properties on some visual datasets, and includes as well
some example of Probabilistic PCA.You can follow the Jupyter notebook to do the exercices. Note
that several functions can be found in ../libs/utils.py. You can look at them to understand what they
do, and take inspirations of them to program othe functions to address the lab questions.

1 Programming the PCA
In step 1 to 3 of the notebook, you are shown how to load data, and you are asked to program the
following functions (see the course).

• # PCA.
def my_pca(X):

""" This function performs the extraction of the PCA components
given a dataset (X).

PCA projection.
def pca_projection(X, X_mean, UM):

""" This function projects a matrix of data points X on the
first M eigenvectors.

PCA reconstruction.
def pca_reconstruction(Y, X_mean, UM):

""" This function reconstructs data points given their coordinates Y
in the space spanned by the M eigenvectors of UM.

For the first function, you can use for instance (and appropriately) the eig or SVD eigenvalue
decomposition function (or the pca function).

• Leave the Probabilistic PCA formula aside at the beginning.

2 Testing the PCA - Digit dataset
• Use the usps digit dataset. Select one digit (avoid one or zero) and extract the image data

corresponding to this character.

• Exercise 1 Test the above programs on the dataset of the selected character. In particular, you
can:

1. Compute the PCA components, and visualise them. Comment on what is captured by each
eigenvector (whether you can interpret what you observe, whether it makes sense to you).

1

Note that code is provided to show the eigenvectors. However, to visualize the impact of
the kth eigenvector uk on data (and interpret it somehow), you can synthetize images as
x̄ + ykuk by varying yk within the range of the eigenvector variability present in the data.
Since the variance of yk within the training data is λk, you could take yk = t×

√
λk, with

t ∈ {−3,−1.5, 0, 1.5, 3}. To do so, you can for instance update or modify the code given
in section 3 to show the eigenvectors.

2. Select a few images from the same digit class, and reconstruct them using the M=2, 5
10, 50 or more first eigenvectors. What do you observe when M is low (2 or 5) and
comparing the reconstructed images of the different images? According to you, what is
the appropriate number of eigenvectors needed to compress the selected digit (note Mo
this number)? If you would have to select 80% of the variance of the original data, which
number Mv would you get? Do you see a difference in the set of eigenvalues, and for Mv
when considering different digits (7 or 8 for instance)? can you explain the difference?

3. Select an image from a digit from another class. Reconstruct it with the same number Mo
of eigenvectors as above (using the eigenvectors found in questions 1). Repeat with other
images from other digit classes. Comment the result.

• Exercise 2. Now use all the digit dataset.

1. Apply the PCA and visualize the obtained eigenvectors as above. Comment on the ob-
tained results.

2. Take digits from every class, and see how well we can reconstruct them using from 1 up
to 15 eigenvectors. Are there some digits which are easier to reconstruct? What could be
the explanation?

3. Synthetize new digit images by setting (manually) different coordinates (in the eigenvec-
tor space) for the few first eigenvectors (M<5). Comment on (for instance) the acceptable
range of values to obtain images that ’look’ like (or not) a real digit image.
According to this experiment, if you would be given an input image for which the recon-
struction error1 would be 0 when using a few eigenvectors, could you conclude that its
content is ’similar’ to that of the data used for learning the PCA? Explain.

• Probabilistic PCA. The final part of the notebook contains code to perform probabilistic PCA
(assuming that the my pca function is written). It also proposes to generate samples according
to the graphical model. Use it with images of only one digit, and see whether the generated
samples match your expectation of a sample. Test different subspace dimensions.

What do you notice regarding the noise added when changing dimension (e.g. comparing M=5
and M=50)? Explain (see course on what does the noise in the data space correspond to).
Do it again using data from 2 digits (e.g. 3 and 7). Comment. You can also consider the data
from all digits.

1Defined as ‖x− x̃‖, where x̃ denotes the reconstructed image.

2

3 Eigenfaces - face recognition
We are given a set of labelled images of size 50 × 50 representing the faces of 10 people under
different illumination conditions. Each image is thus represented by a 1D vector of 2500 dimensions.
The goal is to recognize the faces by using the K Nearest Neighboor (kNN) algorithm. To avoid
computing euclidian distances in the 2500 dimensional spaces, the face images will be first projected
into a smaller dimension space using PCA.

(a) Using the Subset1YaleFaces.mat data, compute the eigenvectors (eigenfaces) representation. Dis-
play the set of eigenvalues. How many non-zero eigenvalues do you obtain ? why is it so?
Display the ’mean’ face as well as the first 9 eigenfaces (as mentioned in footnote 1).. Then,
for different values of M, take a face, project it on the first M eigenvectors and visualize its
reconstruction.

(b) If we denote by y the coefficients of the PCA decomposition of a data point x using all compo-
nents, show or explain why:

‖x2 − x1‖2 = ‖y2 − y1‖2. (1)

If we denote by yM
i the M first coordinates of yi (corresponding to the M first eigenvectors)

associated to an input vector xi, and by x̃i the reconstructed face of this input image xi by using
these first M components, show that:

‖x̃2 − x̃1‖2 = ‖yM
2 − yM

1 ‖2 (2)

c) Load the data SameFace.mat, that contains different croppings of a given input face. Visualize the
different images and then, for a given M value (e.g. 50, 100 or 150), compute the reconstruction
error for each of the cropped images. Comment the results. What can you conclude regarding
cropping? Given an input face image, could you suggest a way to select the best cropping?

d) We are now going to use a classifier to recognize images of people in the database. As classifier,
we will use a knn classifier. In Matlab, you can use the function knnclassify. The training data
will be the faces from Subset1YaleFaces.mat (cf above) (i.e. this set will be used to build the
PCA projection matrix, and also as training data by using the corresponding identity labels).
First, using the validation dataset Xvalid Subset2YaleFaces.mat, program and do the following:

1. project all faces from this dataset in order to obtain their PCA representation y.
2. for different values of M and k (you can loop over these values), classify all faces using

knn (and the Subset1 dataset) from Xvalid, and compute the recognition error.
3. select the values of M and k that give the best performance on this validation set. Then

classify the faces from the Subset3YaleFaces.mat dataset, and compute the recognition
error. You can check for the errors whether they make sense or not visually.

3

