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Abstract

This paper presents a novel approach for visual scene mgdatid classification, investigating the
combined use of text modeling methods and local invariaatufes. Our work attempts to elucidate
(1) whether a text-likebag-of-vistermsepresentation (histogram of quantized local visual fesuis
suitable for scene (rather than object) classificationw({2¢ther some analogies between discrete scene
representations and text documents exist, and (3) whetfseipervised, latent space models can be used
both as feature extractors for the classification task andigoover patterns of visual co-occurrence.
Using several data sets, we validate our approach, prageatid discussing experiments on each of
these issues. We first show, with extensive experiments warpiand multi-class scene classification
tasks using a 9500-image data set, that blag-of-vistermsrepresentation consistently outperforms
classical scene classification approaches. In other d&gangeshow that our approach competes with
or outperforms other recent, more complex, methods. We siisov that Probabilistic Latent Semantic
Analysis (PLSA) generates a compact scene representdisaniminative for accurate classification, and
more robust than thbag-of-vistermsepresentation when less labeled training data is availdhally,
through aspect-based image ranking experiments, we steatility of PLSA to automatically extract

visually meaningful scene patterns, making such repratientuseful for browsing image collections.

Index Terms

Image representation, scene classification, object rédognquantized local descriptors, latent

aspect modeling.

I. INTRODUCTION

Scene classification is an important task in computer vidtas a difficult problem, interesting
in its own right, but also as a means to provide contextuarmétion to guide other processes
such as object recognition [39]. From the application vieinp scene classification is relevant
in systems for organization of personal and professionalgenand video collections. As such,
this problem has been widely explored in the context of auAb@sed image retrieval [38], [37],
[41], but existing approaches have traditionally been thase global features extracted on the
whole image, on fixed spatial layouts, or on image segmematiethods whose results are often
difficult to predict and control [5], [38], [41], [31], [15]16], [42].

In a different direction, viewpoint invariant local desuors (i.e. features computed over

automatically detected local areas) have proven to be usefiong-standing problems such
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as viewpoint-independent object recognition [7], [44]7]j)2wide baseline matching [21], [40],
[19] and, more recently, in image retrieval [34], [12]. Thanto their local character, they
provide robustness to image clutter, partial visibilitpdaocclusion. Thanks to their invariant
nature, changes in viewpoint can be dealt with in a naturgl, wdnile providing robustness
to changes in lighting conditions. All these properties mdke features stable, producing a
relatively repeatable representation of a particular @bj@ the case of scenes, since we expect
the component parts of a given scene class to have relatiraliar image representations, these
features could potentially be useful to detect and desiitmdar local scene areas consistently,
thus providing good generalization properties.

In a sense, these local invariant features show many conlitiesawith the role played
by words in traditional document analysis techniques [t]that they are local, have a high
repeatability between similar images of similar scenes, laave a relatively high discriminant
power. This analogy has been exploited in recent works ttoparretrieval within videos [34],
or object classification [44], and is studied here in moreaidiet

However, scene classification is clearly different from gmaetrieval and object categoriza-
tion. On one hand, images of a given object are usually ctextaed by the presence of a
limited set of specific visual parts, tightly organized imtifferent view-dependent geometrical
configurations. On the other hand, a scene is generally ceatpbof several entities (e.g. car,
house, building, face, wall, door, tree, forest, rocksyamized in often unpredictable layouts.
Hence, the visual content (entities, layout) of a specifenscclass exhibits a large variability,
characterized by the presence of a large number of differisnfl descriptors. In view of this,
while the specificity of an object strongly relies on the getmgcal configuration of a relatively
limited number of visual descriptors [34], [12], the spexifi of a scene class greatly rests on
the particular patterns of co-occurrence of a large numbersoial descriptors.

In this paper, we propose a novel approach for scene clag®ficthat integrates scale-
invariant feature extraction and latent space modelinghous. The contributions of our paper
are the following.

1) An approach for scene classification, based on the udeag$-of-vistermgBOV) (i.e.
guantized invariant local descriptors) to represent sedfreen though recent work used quantized
local descriptors for object matching in videos [34], and dbject classification [44], our work

demonstrates that this approach is successful to classéyes. We show this by presenting
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extensive experiments on two binary and four multi-classsification tasks (including 3, 5,
6, and 13 classes). Moreover, we show by a rigorous compattsat our work consistently
outperforms classical scene classification approachds Wéd also show that our approach is
clearly competitive when compared to approaches that hesently appeared [42] or that have
been developed in parallel to ours [11]. Finally, to providew insights about the analogy
between the bag-of-visterms representation and text, we tanducted a study of sparsity, co-
occurrence, and discriminative power of visterms, whiclpkements and extends the work by
[34], in a different media source.

2) A novel approach for scene classification, based on theotipeobabilistic latent space
models [14], [3] that have proven to be successful in texteliad, to build scene representations
beyond the bag-of-visterms. Latent space models captu@c@arrence information between
elements in a collection of discrete data that simpler sgrtations usually cannot, and allow
to address issues related to synonymy (different visterrag rapresent the same scene type)
and polysemy (the same visterm may represent differentestgmes in different contexts),
which can be encountered in scene classification. We showPttmdoabilistic Latent Semantic
Analysis (PLSA) allows for the extraction of a compact, disinant representation for accurate
scene classification, that outperforms global scene reptatons, and remains competitive with
recently proposed approaches. This compact representatiespecially robust when labeled
training data is scarce, and allows for a greater re-usalmfi our framework, as labeling is a
time-consuming task. All of our findings are based on extenekperiments. Although related,
the approach we propose differs from the ones discussed Jridd scene classification and [33]
for object clustering. A detailed discussion of the diffezes is presented in the next Section.

3) A novel approach for scene ranking and clustering, basgti@successful use of the PLSA
formulation. We show that PLSA is able to automatically captmeaningful scene aspects from
data, where scene similarity is evident, which makes ourARt&rived representation useful to
explore the scene structure of an image collection, andtiimagng it into a tool with potential
in visualization, organization, browsing, and annotatxdnmages in large collections.

The rest of the paper is organized as follows. The next Sedfiscusses related work.
Section Il presents the image representations we expfeetion IV compares properties of
these representations with text document representatBewion V describes the classifier we

use. Section VI presents our experimental setup. Clagsiirceesults are provided and discussed
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in Section VII. Section VIII describes the aspect-basedgeneanking results. Section IX com-
pares our method with recently proposed works, on othetiegiscene classification data sets.

Section X concludes the paper.

I[I. RELATED WORK

The problem of scene classification using low-level featuras been studied in image and
video retrieval for several years [13], [38], [41], [26],9R [28], [37]. Broadly speaking,
the existing methods differ by the definition of the targeerse classes, the specific image
representations, and the classification method. We foaugsliftussion on the first two points.
With respect to scene definition, most methods have aimedhasifying images into a small
number of semantic scene classes, including indoor/out@8), [36], city/landscape [41], and
sets of natural scenes (e.g. sunset/forest/mountain) yever, as the number of categories
increases, the issue of overlapping between scene clasgesages arises. To handle this issue,
a continuous organization of scene classes (e.g. from naento natural scenes) has been
proposed [26]. Alternatively, the issue of scene classlapetan be addressed by doing scene
annotation (e.g. labeling a scene as depicting multiplesels). This approach is followed by
Boutell et al. [5], which exploits the output of one-agataitclassifiers to derive multiple class
labels. Although the attributions of multiple labels is miplored in our work, the framework
we present, in particular the PLSA approach, can be easiignded to perform multi-label
attribution [23].

Regarding global image representations for scene classifi; the work by Vailaya et al. is
regarded as representative of the literature in the fielfl [#iis approach relies on a combination
of distinct low-level cues for different two-class problefglobal edge features for city/landscape,
and local color features for indoor/outdoor). In the work@lva and Torralba [26], an interme-
diate classification step into a set of global image proeertiaturalnessopennessroughness
expansionandruggednessis proposed. Images are manually labeled with these piepeand
a Discriminant Spectral Template (DST) is estimated forhepperty. The DSTs are based
on the Discrete Fourrier Transform (DFT) extracted from Wigole image, or from a four-
by-four grid. A new image is represented by the degree of eddine five properties based
on the corresponding estimated DST, and this representaiosed for the classification into

semantic scene categories (coast, country, forest, moyrgte.). Other approaches to scene
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classification also rely on an intermediate supervisedoregiassification step [25], [31], [8].
Based on a Bayesian Network formulation, Naphade and Huefigedi a number of intermediate
regional concepts (e.g. sky, water, rocks) in addition t® $kkene classes [25]. The relations
between the regional and the global concepts are specifidteinetwork structure. Serrano et
al. [31] propose a two-stage classification of indoor/ootdscenes, where features of individual
image blocks from a spatial grid layout are first classifiei imdoor or outdoor. These local
classification outputs are further combined to create thbajlscene representation used for the
final image classification. Similarly, Vogel and Schielearity used a spatial grid layout in a
two-stage framework to perform scene retrieval and scassification [42]. The first stage does
classification of image blocks into a set of regional classdsch extends the set of classes
defined in [25] (this requires block ground-truth labelinghe second stage performs retrieval or
classification based on the occurrence of such regionalegdsién query images. Alternatively,
Lim and Jin [18] successfully used the soft output of senpiesuised regional concept detectors
in an image indexing and retrieval application. In a différéormulation, Kumar and Herbert
used a conditional random field model to detect and localiae-made scene structures, doing
in this way scene segmentation and classification [15]. &lex large number of local, regional,
and global representations have been used for scene dassiii

The combination of interest point detectors and local dptms are increasingly popular for
object detection, recognition, and classification [19]eTherature in the field is too large to
discuss in details here [34], [12], [9], [7], [27], [35], [#417]. For the classification task, recent
works include [12], [9], [7], [27], [10], [44]. Most existmn works have targeted a relatively
small number of object classes. Fergus et al. optimized,joind unsupervised model, a scale-
invariant localized appearance model and a spatial digioib model [12]. Fei-Fei et al. proposed
a method to learn object classes from a small number of t@imxamples [9]. The same
authors extended their work to an incremental learning gore, and tested it on a large
number of object categories [10]. Dorko and Schmid perfarrfeature selection to identify
local descriptors relevant to a particular object clasgemiweakly labeled training images [7].
Opelt et al. proposed to learn classifiers from a set of vigesures, including local invariant
ones, via boosting [27]. Although our work shares the useng@riant local descriptors with
all these methods, scenes are different than objects in @&uof ways, as discussed in the

Introduction, and pose specific challenges.
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The analogy between invariant local descriptors and woadsalso been exploited recently [34],
[35], [44]. Sivic and Zisserman proposed to cluster and tjmariocal invariant features into
visterms, for object matching in frames of a movie. Such apph allows to reduce noise
sensitivity in matching and to search efficiently throughieeg video for frames containing the
samevisual content (e.g. an object) using inverted files [34%][3Villamowski et al. extended
the use of visterms creating a system for object matchingcéassification based on a bag-of-
words representation built from local invariant featuresl aarious classifiers [44]. However,
these methods neither investigated the task of scene mgdahd classification, nor considered
latent aspect models as we do here.

In another research direction, a number of works have alsiren the definition of visterms
and/or on variations of latent space models to model aresbtahages, i.e. to link images
with key words [2], [4], [22], [45]. However, all these mett® have relied on traditional
regional image features without much viewpoint and/ornilimation invariance. In our work,
we characterize a scene using local descriptors as visteakisag into account the problems
that exist in the construction of a visterm vocabulary. We lasent space models not to annotate
images but to address some limitations of the visterm vdeajpuescribing images with a model
that explicitly accounts for the importance of visterm amarrence.

In parallel to our work [29], [24], the joint use of local imiant descriptors and probabilitic
latent aspect models has been investigated by Sivic et rmbdject clustering in image collec-
tions [33], and by Fei-Fei and Perona for scene classificdfid]. Although related, these two
approaches differ from ours in their assumptions. Siviclef38] investigated the use of both
Latent Dirichlet Allocation (LDA) [3] and PLSA for clusterg objects in image collections.
With the same image representation as ours, they showedatlkeat aspects closely correlate
with object categories from the Caltech object data setjdhahese aspects are learned in an
unsupervised manner. The number of aspects was chosen Oydhe equal (or very close) to
the number of object categories, so that images are seerxéigesi of one 'background’ aspect
with one 'object’ aspect. This allows for a direct match betw object categories and aspects,
but at the same time implies a strong coherence of the appsa@ objects from the same
category: each category is defined by only one multinomgtrithution over the quantized local
descriptors. Closer to our work, Fei-Fei and Perona [11ppsed two variations of LDA [3]

to model scene categories. They tested different regioectieh processes to build an image
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interest point descriptor quantization
detection computation histogramming

image

PLSA modeling

{ [0.21 0.01 .... 0.05]
{[0.010.11 ... 0.03]
[0.320.12 ... 0.00]

bag-of-visterms aspect representation
t [0.010.03....0.02]

Fig. 1. Representation computation of an image.

representation based on quantized local descriptors.r&dntto [33], Fei-Fei and Perona [11]
propose to model a scene category as a mixture of aspectsgammdaspect is defined by a
multinomial distribution over the quantized local destwig. This is achieved by the introduction
of an observed class node in their models [11], which expficequires each image example
to be labeled during the learning process.

In this paper, we model scene images using a probabiligeaiaspect model and quantized
local descriptors, but without assuming a one-to-one spordence between categories and
aspects as in [33], and without learning a single distrdyutver aspects per scene category as
in [11]. Images - not categories - are modeled as mixturesspées in a fully unsupervised
way, without class information. The distribution over adgeserves as image representation,
that is inferred on new images and used for supervised Gtzd&n in a second step. These
differences are crucial, as they allow us to investigateute of unlabeled data for learning the

aspect-based image representation.

[1l. | MAGE REPRESENTATION

There are two main elements in an image classification sysiém first one refers to the
computation of the feature vector representing an imagend the second one is the classifier,
the algorithm that classifies an input image into one of tlegefined category using the feature
vector. In this section, we focus on the image represemtaiia describe the two models that we
use: the first one is the bag-of-visterms, built from quatiiocal descriptors, and the second
one is obtained through the higher-level abstraction oftthg-of-visterms into a set of aspects

using latent space modeling.

December 6, 2006 DRAFT



A. Bag-of-visterms representation from local descriptors

The construction of the bag-of-visterms (BOV) feature vedét from an imaged involves
the different steps illustrated in Fig. 1. In brief, intergmints are automatically detected in
the image, then local descriptors are computed over the @magions associated with these
points. All descriptors are quantized into visterms, arldeaturrences of each specific visterm
of the vocabulary in the image are counted to build the BOVZesgntation of the image. In the
following we describe in more detail each step.

1) Interest point detectionThe goal of the interest point detector is to automaticatyaet
characteristic points -and more generally regions- fromithage, which are invariant to some
geometric and photometric transformations. This invasaproperty is interesting, as it ensures
that given an image and its transformed version, the samgamaints will be extracted from
both and hence, the same image representation will be eotaeveral interest point detectors
exist in the literature. They vary mostly by the amount ofain&nce they theoretically ensure,
the image property they exploit to achieve invariance, dadtype of image structures they are
designed to detect [40], [19], [21]. In this work, we use thH#edence of Gaussians (DOG)
point detector [19]. This detector essentially identifiésbklike regions where a maximum or
minimum of intensity occurs in the image, and it is invariagattranslation, scale, rotation
and constant illumination variations. We chose this detesince it has previously shown to
perform well [20], and also since we found it to be a good chait practice for the task at
hand, performing competively compared to other deteciitne. DOG detector is also faster and
more compact than similarly performing detectors. An adddl reason to prefer this detector
over fully affine-invariant ones [21], [40], is also motiedt by the fact that an increase of the
degree of invariance may remove information about the lonalge content that is valuable for
classification. An empirical evaluation of point detectéws classification will be presented in
Section VII, see also Table IV.

2) Local descriptors:Local descriptors are computed on the region around eaelesttpoint
identified by the local interest point detector. We use tH€l§BScale Invariant Feature Transform)
feature as local descriptors [19]. Our choice was motivatefindings in the literature [20], [11],
where SIFT was found to work best; we also confirm this for omn @vork in Section VII. This

descriptor is based on the grayscale representation ofeas&JFT features are local histograms
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of edge directions computed over different parts of ther@deregion. These features capture
the structure of the local image regions, which correspangpiecific geometric configurations
of edges or to more texture-like content. In [19], it was shaivat the use of 8 orientation
directions and a grid of 4x4 parts gives a good compromisedmt descriptor size and accuracy
of representation. The size of the feature vector is thus @2ntation invariance is achieved
by estimating the dominant orientation of the local imagelpaising the orientation histogram
of the keypoint region. All direction computations to olotahe SIFT feature vector are done
with respect to this dominant orientation.

3) Quantization and vocabulary model constructiafhen applying the two preceding steps
to a given image, we obtain a set of real-valued local detswgpln order to obtain a text-like
representation, we quantize each local descriptointo one of a discrete sét of visterms

v according to a nearest neighbor rule:
s — Q(s) = v; <= dist(s, v;) < dist(s,v;), Q)

Vi e {1,..., Ny}, whereN,, denotes the size of the visterm set. Thegeif all visterms will
be called vocabulary.

The construction of the vocabulary is performed througlsteling. More specifically, we
apply the K-means algorithm to a set of local descriptorsaexéd from training images, and
the means are kept as visterms. We used the Euclidean distatize clustering (and in Eq. 1)
and choose the number of clusters depending on the desicadbwary size. The choice of the
Euclidean distance to compare SIFT features is common [29],

Technically, the grouping of similar local descriptorsairat specific visterm can be thought of
as being similar to thetemmingpreprocessing step of text documents, which consists tdci
all words by their stem. The rationale behind stemming i$ tha meaning of words is carried
by their stem rather than by their morphological variatifhp The same motivation applies
to the quantization of similar descriptors into a singletefis1. Furthermore, in our framework,
local descriptors will be considered as distinct wheneliel tare mapped to different visterms,
regardless of whether they are close or not in the SIFT feadpace. This also resembles the
text modeling approach which considers that all infornrai®in the stems.

4) Bag-of-visterms representatiorithe first representation of the image that we will use

for classification is the bag-of-visterms (BOV), which isnstructed from the local descriptors
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according to:
h(d) = (hi(d))izlan, with hl(d) = n(d, UZ'), (2)

where rid, v;) denotes the number of occurrences of vistetnin imaged. This vector-space
representation of an image contains no information aboatiaprelationship between visterms.
The standard bag-of-words text representation results verg similar 'simplification’ of the
data: even though word ordering contains a significant amoiuimformation about the original

data, it is completely removed from the final document regmestion.

B. Probabilistic Latent Semantic Analysis (PLSA)

The bag-of-words approach has the advantage of producinignples representation, but
potentially introduces the well knowsynonymyand polysemyambiguities, as will be shown
in the next Section. Recently, probabilistic latent spacaets [14], [3] have been proposed to
capture co-occurrence information between elements inlaction of discrete data in order to
disambiguate the bag-of-words representation. The asafgisterm co-occurrences can thus be
considered using similar approaches, and we use the Phshialliatent Semantic Analysis [14]
(PLSA) model in this paper for that purpose. Though PLSAe&sffrom a non-fully generative
formulation, its tractable likelihood maximization makisan interesting alternative to fully
generative models [3] with comparative performance [33].

PLSA is a statistical model that associates a latent varight Z = {z;,...,2x,}, Where
N 4is the number of aspects, with each observation (occurrehaevord in a document). These
variables, usually called aspects, are then used to buitdna probability model over images

and visterms, defined as the mixture

Na

P(vj,d;) = P(di) > Pz | di)P(v; | 21). (3)

PLSA introduces a conditional independence assumptionehethat the occurrence of a visterm
v; is independent of the imagé it belongs to, given an aspeet The model in Equation 3

is defined by the probability of an image(d;), the conditional probabilities’(v;|z;), which
represent the probability of observing the visterpngiven the aspect;, and by the image-specific
conditional multinomial probabilitie®(z;|d;). The aspect model expresses the conditional prob-

abilities P(v;|d;) as a convex combination of the aspect-specific distribati®fv;|z;).
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The parameters of the model are estimated using the maxinkafihbod principle. More
precisely, given a set of training imagéy the likelihood of the model paramete®s can be
expressed by

Ny
£©Dp) = [ [T plvs, )™, (4)
deD j=1
where the probability model is given by Eq. 3. The optimiaatis conducted using the Expectation-
Maximization (EM) algorithm [14]. This estimation proceaduallows to learn the aspect dis-
tributions P(v,|2;). These image independent parameters can then be used rtahefaspect
mixture parameter®’(z;|d) of any imaged given its BOV representatioh(d). Consequently,

the second representation of the image that we will use isekfiby

a(d) = (P(z]d))i=1..n,- (5)

IV. ANALOGY WITH TEXT

In our framework, we consider the visterms like text termd armodel them with techniques
that are commonly applied to text. In this section, we cormgmoperties of terms in documents
with those of visterms within images. We first discussgparsityof the document representation,
an important characteristic of text documents. We then idensssues related to the semantic

of terms, namelysynonymyand polysemy

A. Representation sparsity

To investigate the analogy with text representation, we an@ the behavior between the
BOV representation of an image data set and the bag-of-wegptesentation of a standard text
categorization data set.

The REUTERS-21578data set contains 12900 documents. The standard word stpppil
stemming process produces a vocabulary of 17900 words. @&dqusly observed in natural
language statistics, the frequency of each word acrosexihdata set follows the Zipf’s law, =
r~%, wherer is the keyword rank according to its frequency anis close to unity (see Fig. 2
(top)). This distribution results in an average number ofrdb-zero elements per document,

which corresponds to an average sparseness of 0.25%. Cha @700 words in the dictionary,
hwww.daviddlewis.com/resources/testcollections/n=ae578.
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Fig. 2. Top: relative frequency distribution of the worddragted from REUTERS-21578, first 1000 words. Bottom: redat

frequency distribution of the visterms in the city-landsealata seD1.

35% occur once in the data set and 14% occur twice. Only 33%efnmords appear in more
than five documents.

In our case, we applied the K-means algorithm on D image data set described in
Section VI-B, which contains 6680 images of city and langscaand generated the BOV
representation for each image document of this data setocabularyl;, of size N, = 1000.
Since the visterm vocabulary is created by the K-means eringt of SIFT descriptors, the
resulting vocabulary shows different properties than ixt.tés shown in Fig. 2 (right), the
frequency distribution of visterms differs from the Zipfaw behavior usually observed in text.
The K-means algorithm identifies regions in the feature spaantaining clusters of points,
which prevents the low frequency effect observed in texadaee Fig. 2 bottom). The visterm
with the lowest frequency appears in 117 images of the fukh dat (0.017 relative frequency).
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We also observed an average of 175 non-zero elements pee,iwaich corresponds to a data
sparseness of 17.5%.

The construction of the visual vocabulary by clusteringinsically leads to a "flatter”
distribution for visterms than for words. On one hand, thifecence can be considered as
an advantage, as the data sparseness observed in the teftwagls representation is indeed
one of the main problems encountered in text retrieval andgoaization. Similar documents
might have very different bag-of-words representatiorsabee specific words in the vocabulary
appear separately in their description. On the other hafialtar distribution of the features might
imply that, on average, visterms in the visual vocabulavjte less discriminant information.
In other words, the semantic content captured by individisterms is not as specific as the

one of words. We address this issue in the next subsection.

B. Polysemy and synonymy with visterms

To study the “semantic” nature of the visterms, we first cdeed the class conditional
average of the BOV representation. Fig. 3 (top) shows theageeof visterms for the city and
landscape scene categories, computed over the first splidtaf setD1 (see Section VI-B for
details). We display the results when using the vocabuldr0® visterms,V;y,, defined in
Section VII-A. The behavior is similar for other vocabulasiges.

We first notice that there is a large majority of terms thategppn both classes: all the terms
are substantially present in the city class; only a few ofrtlt® not appear in the landscape class.
This contrasts with text documents, in which words are inegainmore specifically tied to a
given category. Furthermore, we can also observe that ther peaks in the two class averages
coincide in general. Thus, when using the BOV represemtatiee discriminant information with
respect to the classification task seems to lie in the diffe¥eof average word occurrences. It is
worth noticing that this is not due to a bias in the averagastevm numbers, since the difference
in the average number of visterms per class is only in theronfld% (city: 268/ landscape:
259). Additionally, these average curves hide the facttiinate exists a large variability between
samples, as illustrated in Fig. 3 (bottom), where two randésamples are plotted along with the
average of the landscape class. Overall, all the abovedenagions indicate that visterms, taken
in isolation, are not so class-specific, which in some sedsecates against feature selection

only based on the analysis of the total occurrence of indafideatures (e.g. [7]), and reflects

December 6, 2006 DRAFT



15

15 I
— city
—— landscape

=
o
T
|

Occurences

a1
T
I —

A oA MA o/ il m

0 10 20 30 40 100
Vlsterms index

30 T T T T
=— |andscape average

25 ‘h‘ — landscape example 1 B
| ﬁ —— landscape example2 h

Occurences

0 10 20 30 40 50 . 60 70 80 90 100
Visterms index

Fig. 3. Bag-of-visterms representation. Top: average efBOV representation with respect to city (blue) and lanpgedaed)

computed over the first split of data $21. Bottom: landscape average (blue) compared with inditidamples (red and green).

the fact that the semantic content carried by visterms, yf @ strongly subject to polysemy
and synonymy issues.

To illustrate that visterms are subject polysemy-a single visterm may represent different
scene content- angynonymy-several visterms may characterize the same image conteat-
show samples from three different visterms obtained wheldibg the vocabularyl;y (see
Section VII-A for details) in Fig. 4. As can be seen, the topteim (first two rows in Fig. 4)
represents mostly eyes. However, windows and publicitghpet get also indexed by this visterm,
which provides an indication of the polysemic nature of thigterm, which means here that
although this visterm will mostly occur on faces, it can at&aur in city environments. The two
middle rows in Fig. 4 present samples from another vister@ar@, this visterm also represents
eyes, which makes it a synonym of the first displayed vistdfimally, the samples of a third

visterm (last two rows of Fig. 4) indicate that this visteraptures a certain fine grain texture that
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Fig. 4. Samples from three randomly selected visterms froracabulary of 1000 visterms.

has different origins (rock, trees, road or wall textuyewhich illustrates that not all visterms
have a clear semantic interpretation.

To conclude, it is interesting to notice that one factor tbah affect the polysemy and
synonymy issue is the vocabulary size: the polysemy of mstemight be more important when
using a small vocabulary size than when using a large voaapuConversely, with a large
vocabulary, there are more chances to find many synonymswtiara small one. Since PLSA
can in theory handle both synonymy and polysemy issues,uidda principle lead to a more

stable representation for different vocabulary sizes.

V. SCENE CLASSIFICATION

To classify an input imagé represented either by the BOV vectdrsthe aspect parameters
a, or any of the feature vector of the baseline approach (seteseetion), we employed Support
Vector Machines (SVMs) [6]. SVMs have proven to be succegefgolving machine learning
problems in computer vision and text categorization apgibnis, especially those involving large
dimensional input spaces. In the current work, we used Gaugsrnel SVMs, whose bandwidth
was chosen based on a 5-fold cross-validation procedure.

Standard SVMs are binary classifiers, which learn a deciiaotion f(x) throughmargin
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optimization [6], such thayf(z) is large (and positive) when the inputbelongs to the target

class, and negative otherwise. For multi-class classificatve adopt a one-against-all approach
[43]. Given an-class problem, we train SVMs, where each SVM learns to differentiate images
of one class from images of all other classes. In the testivag®, each test image is assigned

to the class of the SVM that delivers the highest output ofiésision function.

VI. EXPERIMENTAL SETUP

In this section, we describe the classification tasks weidersd, the origin and composition
of our data sets, the classification protocol we followed] Hre baseline methods we used for

comparison purposes.

A. Classification tasks

Four classification tasks, ranging from binary to five-classsification, have been considered
to evaluate the performance of the proposed approaches. rétecinsidered two standard,
unambiguous binary classification tasks: indoor vs. outdaod landscape vs. city. These two
tasks allow a first evaluation of the classification perfamoeg and a fair comparison with
approaches that have been proposed for the same tasks p4H.rrore detailed analysis of the
performance, we then merged the two binary classificatiskstéo obtain a three-class problem
(indoor vs. city vs. landscape). We also subdivided thedaape class into mountain and forest,
and the city class into street view and panoramic view toinkaafive-class data set.

In Section IX we present additional results on two scenesdiaation data sets, with 13 and

6 scene categories respectively, that have been proposedant literature [11], [42].

B. Datasets

Five data sets were created four our experimedfs: this data set of 6680 images contains
a subset of the Corel data set [41], and is composed of 250%od 4175 landscape images
of 384x256 pixels.D2: this set is composed of 2777 indoor images retrieved fronirtteznet.
The size of these images is typically 38256 pixels. Original images with larger dimensions
were resized using bilinear interpolation. The image sizthe data set was kept approximately
constant to avoid a potential bias in the BOV representasorce it is known that the number

of detected interest points is highly dependent on the intagelution.D3: this data set is
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constituted by 3805 images from several sources: 1002 ibgilinages (ZuBud) [32], 144
people and outdoor images [27], 435 indoor human faces f81],indoor images (Corel) [41],
1516 city/landscape overlap images (Corel) [41], and 2&&rhet photographic imageB4: this
data set is composed of all images from the data Bétand D2. The total number of images
in this data set is 945D4v: this is a subset db4 composed of 3805 randomly chosen images.
D5: this is a five-class data set. It comprises all images frondtta setD2, and images from
D1 whose content corresponds to the selected classes. Frof6&8@eimages oD1 we kept :
590 mountain images, 492 forest images, 1957 city streegjesidclose-up of buildings), and
548 city panoramic images (middle to far views from buildipngrhe data sets contains a total
of 6364 images.

In the experiments, We use the dataBétfor the city vs. landscape scene classification task,
and D4 for indoor vs. outdoor scene classificatid4 in the three-class case, alb in the
five-class problem.

Alternative vocabularies were constructed from eitb& or D4v, allowing us to study the
influence of the data on the vocabulary model, and its impactlassification performance.
With 3805 images, we obtained in both cases approximatedynoition descriptors to train the

vocabulary models. These data sets are availabletiat//carter.idiap.ch/data sets.html

C. Protocol

The protocol for each of the classification experiments waso#Hows. The full data set of
a given experiment was divided into 10 parts, thus definingliff@rent splits of the full data
set. One split corresponds to keeping one part of the datie$ting, while using the other nine
parts for training (hence the amount of training data is 90%e full data set). In this way, we
obtain 10 different classification results. Reported valfor all experiments correspond to the
average error over all splits, and standard deviations @fetinors are provided in parentheses
after the mean value.

Additional experiments were conducted with less amountaohing data, to test the robustness
of the image representation. In that case, for each of thessphages were chosen randomly
from the training part of the split to create a reduced tragnset. Care was taken to keep the
same class proportions in the reduced set as in the origatabed to use the same reduced

training set in those experiments involving two differeapresentation models. The test data of
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each split was left unchanged.

D. Baseline method

As a baseline method, we use the image representations qggry Vailaya et al. [41].
We selected this approach, as it reports some of the bedtsrdsam all scene classification
approaches for data sets with landscape, city and indoageéman a significantly large data set.
Thus, it can be regarded as a good representative of theddttie-art.

Two different representations are used for each binarysidieation tasks: color features
are used to classify images as indoor or outdoor, and edgierdésaare used to classify outdoor
images as city or landscape. Color features are based oftut¥ditst- and second-order moments
computed over a 2010 spatial grid of the image, resulting in a 600-dimensidaature space.
Edge features are based on edge coherence histogramsatadcoh the whole image, and
are computed by extracting edges in only those neighbosheatibiting some edge direction
coherence. Directions are then discretized into 72 doastiand their histogram is computed. An
extra non-edge pixels bin is added to the histogram, leatdirsgfeature space of 73 dimensions.

In the three-class problem Vailaya et al. apply both methoashierarchical way [41]. Images
are first classified as indoor or outdoor given their colore@spntation. All correctly classified
outdoor images are further classified as either city or leapoks, according to their edge direction

histogram representation.

VIl. CLASSIFICATION RESULTS

In this section, we present the classification results of approach, first using the BOV
representation, then using the aspect representatiorgangare both of them with the baseline
method. The performance of the methods under differentitiond (vocabulary size, number

of latent aspects, amount of training data) are presentddiecussed.

A. Scene classification with bag-of-visterms

Binary classification
To analyze the effect of the size of the vocabulary emplogezbnstruct the BOV representation,

we considered four vocabularies of 100, 300, 600, and 108@mns, denoted b¥igy, Voo,
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Method indoor/outdoor  city/landscape

baseline 10.4 (0.8) 8.3 (1.5)

BOV Vigy 85 (1.0) 55 (0.8)
BOV Vioo 7.4 (0.8) 5.2 (1.1)
BOV Vgoo 7.6 (0.9) 5.0 (0.8)
BOV Vigeoy 7.6 (1.0) 53 (1.1)
BOVV/, 81 (05 55 (0.9)
BOV VY, 7.6 (090 51 (1.2
BOV V), 7.3 (0.8) 51 (0.7)
BOV V/yo, 7.2 (1.0) 54 (0.9)

TABLE |
CLASSIFICATION ERROR FOR THE BASELINE MODEL AND THEBOV REPRESENTATION FOR 8 VOCABULARIES. STANDARD

DEVIATIONS ARE SHOWN IN PARENTHESES

Voo, @andVigeo, respectively, and constructed frdd8 as described in Section Ill. Additionally,
four vocabularies’},, V3yy, Vg, and Vi, were constructed frond4v.

Table | provides the classification error for the two binagssification tasks. We can observe
that the BOV approach consistently outperforms the basetfiethods. This is confirmed in all
cases by a paired T-test, for= 0.05. It is important to remind that contrarily to the baseline
methods, the BOV representation uses the same featurestfotdsks and no color information.

Regarding vocabulary size, overall we can see that for wdagks of 300 visterms or more
the classification errors are equivalent. This contrasts thie work in [44], where the "flattening’
of the classification performance was observed only for bolzaies of 1000 visterms or more.
A possible explanation may come from the difference in tagkgct classification) and in the
use of the Harris-Affine point detector [21], known to be Ietgble than DOG [20].

The comparison of the rows 2-5 and 6-9 in Table | shows thaitguaivocabulary constructed
from a data sedifferent than the one used for the classification experimebt3,and D4v
respectively, does not affect the results (error ratewdifices are within random fluctuation
values). This result confirms the observations made in @dd, suggests that it might be feasible

to build a generic visterm vocabulary that can be used fdertint tasks. Based on these results,
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Method indoor/city/landscape

baseline 159 (1.0
BOV Vigo 12.3 (0.9)
BOV V00 11.6 (1.0
BOV Voo 11.5 (0.9)
BOV Vigoo 11.1 (0.8)

BOV Vigoo hier. 11.1 (11)

TABLE Il
THREE-CLASS CLASSIFICATION ERROR FOR BASELINE ANBBOV MODELS. THE BASELINE MODEL SYSTEM IS

HIERARCHICAL.

we use the vocabularies built fro®3 in all the remaining experiments.

Three-class classification

Table 1l shows the results of the BOV approach for the thiteesc classification problem.
Classification results were obtained using both a mulgsI&8VM and two binary SVMs in
the hierarchical case.

First, we can see that once again our system outperformsppeach proposed in [41]
with statistically significant differences. This is confedhin all cases by a paired T-test, with
p = 0.05. Secondly, we observe the stability of results with vocabak of 300 or more visterms,
the vocabulary of 1000 visterms giving slightly better peniance. Based on these results, we
assumé/ ooy to be an adequate choice and t§g, for all experiments in the rest of this paper.
Finally, we can observe that the classification strategyranchical or multi-class SVM, has little
impact on the results for this task.

A closer analysis of the results can be done by looking at trdusion matrix, shown in
Table Ill. First, we can see that landscape images are wadbkifled. Secondly, we observe that
there exists some confusion between the indoor and citge$asThis can be explained by the
fact that both classes share not only similar local imagectires (which will be reflected in
the same visterms appearing in both cases), but also simdterm distributions, due to the
resemblance between some more general patterns (e.g. @oeiadows). The two images on

the top in Fig. 5 illustrate some typical errors made in thase; when city images contain a
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Total class. error 11.1 (0.8)

Classification (%) Class. # of

Gr. Truth | indoor | city | land. | Error (%) | images
indoor 89.7 | 9.0 | 1.3 10.3 2777
city 145 | 74.8| 10.7 25.2 2505
landscapg 1.2 2.0 | 96.8 3.1 4175

TABLE 11l

CONFUSION MATRIX FOR THE THREECLASS CLASSIFICATION PROBLEM USING VOCABULARY Vigo0-

majority of geometric shapes and little texture. In thedhplace, the confusion matrix also
shows that city images are also misclassified as landscdpen&in explanation is that city
images often contain natural elements (vegetation likesti flowers, or natural textures), and
specific structures which produce many visterms. The imégdise bottom in Fig. 5 illustrate

typical mistakes in this case.

We now explore different combinations of point detectoesktiptors. We purposely choose
to do this study on the 3-class problem since we believe thatldi-class classification task is
a more representative problem for this data, but at the saneeit is not obscured by many of
the additional issues of a many-class task. Four point tetemethods: DOG [19], multi-scale
Harris affine (MHA) [21], multi-scale Harris (MH) [21], and fixed 15x20 grid (GRID), and
three descriptor methods: SIFT [19], complex filters (CR)][&nd all x 11 pixel sample of the
area defined by the detector (PATCH) were used in paired amatibns. The results are shown
in Table IV.

In Table IV, we can see that the combination DOG+SIFT is th&t lperforming one, this
is confirmed by a paired T-test, with= 0.05. However, MHA+SIFT and MH+SIFT produce
similar results. This confirms SIFT as the best performingcdptor, as pointed out in the
literature, although for other tasks [11], [20]. As for detes, it is important to note that,
although the multi-scale Harris and multi-scale Harrisnaffdetectors [21] allow for similar
performance, DOG is computationally more efficient and nuoepact (less feature points per
image). Although Table IV shows DOG+SIFT to be the best alhdar this particular task, it

is possible that other combinations may perform better tbeiotasks. Based on these results,
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Fig. 5. Typical classification errors of city images in theeiclass problem. Top: city images classified as indoottoBo

city images classified as landscape.

however, we have confirmed in practice that DOG+SIFT cautstt a reasonable choice.
Five-class classification
Table V presents the overall error rate and the confusiomixnabtained with the BOV approach
in the five-class experiment, along with the baseline oVemabr rate. The latter number was
obtained using the edge coherence histogram global feptlfe

The BOV representation performs much better than the glfdzdures in this task, and the
results show that we can apply the BOV approach to a largebeuwf scene classes and obtain
good results.

Analyzing the confusion matrix, we first observe that sometakies are made between the
forest and mountain classes, reflecting their sharing oflaintextures and the presence of

forest in some mountain images. A second observation isdhapanorama images are often
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SIFT CF PATCH | av. # of points
DOG | 11.1 (0.8) 22.5(1.1) 22.1(0.9) 271
MHA | 119 (1.1) 184 (1.1) 20.6 (1.3) 424
MH 11.8 (1.0) 19.3 (0.9) - 580
GRID | 19.9 (0.9) - 19.8 (0.8 300

TABLE IV

COMPARISON OF COMBINATIONS OF DETECTORDESCRIPTORS FOR INDOORCITY/LANDSCAPE CLASSIFICATION THE

AVERAGE NUMBER OF DETECTED POINTS PER IMAGE IS ALSO SHOWN

Total class. error rate: 20.8 (2.1) (Baseline: 30.1 (1.1))

m. | f. | i. |c.-p,|c.-s.|error (%)# of images$
mount. |85.8 8.6 2.5/ 0.5|2.6| 14.2 590
forest | 8.9(80.311.6|2.4|6.7| 19.7 492
indoor | 0.4 0 |91.10.4(8.1| 8.9 2777
city-pan] 3.5 1.8 8.0(46.939.8f 53.1 549
city-str.| 2.0|2.2/20.8 6.0|68.9 31.1 1957

TABLE V

CLASSIFICATION RATE AND CONFUSION MATRIX FOR THE FIVECLASS, USING BOV AND VOCABULARY Vigoo.

confused with city-street images. This result is not ssipg because of the somewhat ambiguous
definition of the classes (see Fig. 6), which was already rebdeduring the human annotation
process. The errors can be further explained by the scadeiamt nature of the interest point
detector, which makes no distinction between some far-8éiget views in the city-panoramic
images, and middle-view similar structures in the citystrimages. Another explanation is the
unbalanced data set, with almost four times as many cigesimages than panoramic ones.
Finally, we observe that the main source of confusion laysvéen the indoor images and the

city-street images, for similar reasons as those desciib#te three-class task.
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Fig. 6. lllustration of the five classes, with 8 randomly sédel examples per class. From left to right: mountain, fpiadoor,

city-panorama, city-street. All images have been croppediisplay.

B. Scene classification with PLSA

In PLSA, we use the probability distributioR(z;|d;) of latent aspects given each specific
document as &4 dimensional feature vectai(d) (Eqg. 5). Given that PLSA is an unsupervised
approach, where no reference to the class label is usedydin@raspect model learning, we may
wonder how much discriminant information remains in theeg$pepresentation. To answer this

guestion, we compare the classification errors obtaineld tvée PLSA and BOV representations.
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Method A ind.Jout. city/land. ind./city/land.

BOV 7.6(1.0) 53(1.1) 11.1(0.8)
PLSA-1 20 9.5(1.0) 55(0.9) 12.6(0.8)
PLSA-l 60 8.3(0.8) 4.7(09)  11.2(1.3)
PLSA-O 20 8.9 (14) 56 (0.9  12.3(1.2)
PLSA-O 60 7.8(12) 4.9(0.9)  11.9(1.0)

TABLE VI
COMPARISON OFBOV, PLSA-IAND PLSA-OSTRATEGIES ON THE TWG AND THREE-CLASS CLASSIFICATION TASKS

USING 20 AND 60 ASPECTS AND VOCABULARY Vigoo.

Furthermore, to test the influence of the training data onafgect model, we conducted two
experiments which only differ in the data used to estimageltfv;|z;) multinomial probabilities.
More precisely, we defined two cases:

PLSA-I. for each data set split, the training data part (that is usdrhin the SVM classifier,
cf Section VI-C) was also used to learn the aspect models.

PLSA-O: the aspect models are trained only once on the auxiliary sett®3, which is
disjoint from the sets used for SVM learning.

As the data selD3 comprises city, outdoor, and city-landscape overlap imaBeSA learned
on this set should capture valid latent aspects for all thssilication tasks simultaneously. Such
a scheme presents the clear advantage of constructing aeuNigdimensional representation
for each image that can be tested on all classification tasks.

Classification results: two and three-class cases

Table VI shows the classification performance of the lat@aice representation for 20 and 60
aspects for the two strategies PLSA-I and PLSA-O, usiig,. The corresponding results for
BOV with the same vocabulary are re-displayed for comparigarposes.

Discussing first the PLSA training data issue, we observegbgormance of both strategies
is comparable for the city/landscape scene classificabieimg PLSA-O better than PLSA-I for
indoor/outdoor (paired T-test, with = 0.05). This might suggest that aspect models learned
on the same set used for SVM training may cause some ovedfittithe indoor/outdoor case.

Since using PLSA-O allows to learn one single model for alk$a we chose this approach for

December 6, 2006 DRAFT



27

N4 ‘20 40 60 80 100
Error| 5.6 (0.9) 4.9 (0.8) 4.9 (0.9) 4.8 (1.0) 5.0 (0.9)

TABLE VI

CLASSIFICATION RESULTS FOR THE CITYLANDSCAPE TASK, USING DIFFERENT NUMBER OF ASPECTS FORLSA-O.

the rest of the experiments. Of course, the data set fromhathie aspects are learned must be
sufficiently representative of the collection to be classlifin order to obtain a valid aspect-based
representation.

Comparing the 60-aspect PLSA-O model with the BOV approaeh,observe that their
performance is similar, and that PLSA performs better inditg/landscape case (although not
significantly), while the opposite holds for the three-sldask. Learning visual co-occurrences
with 60 aspects in PLSA allows for dimensionality reduction a factor of 17 while keeping
the discriminant information contained in the original B@presentation. Note that PLSA with
60 aspects performs better than the BOV representation tivéhvocabularyl;y in all cases
(see Tables | and 1I).

We also conducted experiments to study the importance ohtimeber of aspects on the
classification performance. Table VIl displays the evalotof the error with the number of
aspects for the city/landscape classification task. Thealteeshow that the performance is
relatively independent of the number of aspects in the rg#@g.00]. For the rest of this paper
we use a PLSA model wittv, = 60 aspects.

For comparison purposes, we present in Table VIl the coofumatrix in the three-class
classification task. The errors are similar to those obthinih the BOV (Table Ill). The only
noticeable difference is that more indoor images were mssified in the city class.
Decreasing the amount of training data
Since PLSA captures co-occurrence information from tha dat learned from, it can provide
a more stable image representation. We expect this to hetheincase of lack of sufficient
labeled training data for the classifier. Table IX compaidessification errors for the BOV and
the PLSA representations for the different tasks when ukseg data to train the SVMs. The
amount of training data is given both in proportion to thd flita set size, and as the total

number of training images. The test sets remain identicallicases.
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Several comments can be made from this table. A general dhatifor all methods, the larger
the training set, the better the results, showing the needddding large and representative
data sets for training purposes. Qualitatively, with theSRLand BOV approaches, performance
degrades smoothly initially, and sharply when using 1% aining data. With the baseline, on
the other hand, performance degrades more steadily.

Comparing methods, we first notice that PLSA with 10% of fragndata outperforms the
baseline approach with full training set (i.e. 90%), thiscanfirmed in all cases by a Paired
T-test, withp = 0.05. BOV with 10% of training still outperforms the baseline apgch with
full training set (i.e. 90%) for indoor/outdoor (paired st withp = 0.05). More generally,
we observe that both PLSA and BOV perform better than thelipastr -almost- all cases of
reduced training set. An exception is the city/landscapssification case, where the baseline
is better than the BOV when using 2.5% and 1% training datd,better than the PLSA model
for 1%. This can be explained by the fact that edge oriemafi@atures are particularly well
adapted for this task, and that with only 25 city and 42 laagscimages for training, global
features are competitive.

Furthermore, we notice that PLSA deteriorates less as #neirig set is reduced, producing
better results than BOV for all reduced training set experita (although not always significantly
better).

Previous work on probabilistic latent space modeling hg®nted similar behavior for text

Total class. error 11.9(1.0)
indoor | city | land. | class error(%) # images
indoor| 86.6 | 11.8| 1.6 13.4 2777
city 148 | 75.4| 9.8 24.5 2505
land. 1.3 19 | 96.8 3.1 4175
TABLE VI

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE THREECLASS PROBLEM USINGPLSA, WITH Vigoo AND 60

ASPECTS
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Method Amount of training data
90% 10% 5% 2.5% 1%

Indoor/Outdoor

# images 8511 945 472 236 90
PLSA  7.8(1.2) 9.1(1.3) 10.0(1.2) 11.4(1.1) 13.9(1.0)
BOV  7.6(1.0) 9.7(1.4) 10.4(0.9) 12.2(1.0) 14.3(2.4)
Baseline 10.4(0.8) 15.9(0.4) 19.0(1.4) 23.0(1.9) 269)(1.

City/Landscape

# images 6012 668 334 167 67
PLSA  4.9(0.9) 5.8(0.9) 6.6(0.8) 8.1(0.9) 17.1(1.2)
BOV 5.3(1.1) 7.4(0.9) 8.6(1.0) 12.4(0.9) 30.8(1.1)
Baseline 8.3(1.5) 9.5(0.8) 10.0(1.1) 11.5(0.9) 13.9(1.3)

Indoor/City/Landscape

# images 8511 945 472 236 90
PLSA  11.9(1.0) 14.6(1.1) 15.1(1.4) 16.7(1.8) 22.5(4.5)
BOV 11.1(0.8) 15.4(1.1) 16.6(1.3) 20.7(1.3) 31.7(3.4)
Baseline 15.9(1.0) 19.7(1.4) 24.1(1.4) 29.0(1.6) 339(2.

TABLE IX
CLASSIFICATION PERFORMANCE FORPLSA-OWITH 60 ASPECTS BOV WITH VOCABULARY Vigoo, AND BASELINE
APPROACHES WHEN USING A SVM CLASSIFIER TRAINED WITH PROGRESSIVELY LESS DATATHE AMOUNT OF TRAINING

DATA IS GIVEN AS PERCENTAGE OF THE FULL DATA SETAND THEN AS THE ACTUAL NUMBER OF TRAINING IMAGES.

data [3]. PLSAs better performance in this case is likelg dolits ability to capture aspects that
contain general information about visual co-occurrendaisl while the lack of data impairs the
simple BOV representation in covering the space of docusnbatonging to a specific scene
class (eg. due to the synonymy and polysemy issues) the RiaS@d representation is less
affected.

Classification results: five-class case

Table X reports the overall error rate and the confusion imnatitained with PLSA-O in the five-
class problem, and with the full training set. As can be s@®$A performs slightly worse than
BOV, but still better than the baseline. By comparing thefasion matrix with that of the BOV

case (Table V), we can see that, while the forest, mountaid,ilmdoor classification behavior
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Total error rate (BOV: 20.8 (2.1), Baseline: 30.1 (1.1))

m. f. i. C.-p. | c.-s.| error (%)
mountain| 85.5| 12.2| 0.8 | 0.3 | 1.2 14.5
forest | 12.8| 78.3| 0.8 | 04 | 7.7 21.7
indoor 0.3 | 0.1 |889| 0.2 | 105 11.1
city-pan.| 3.6 | 49 | 88 | 12.6| 70.1 87.4
city-str. 16 | 1.4 | 204| 1.7 | 749 25.1

TABLE X

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE FIVECLASS PROBLEM USINGPLSA-OWITH 60 ASPECTS

remains almost unchanged, the results for the two city efag®re significantly altered. The main
explanation comes from the rather loose definition of thg-gé&norama class, which contains
many more images from landmark buildings in the middle disgathan ’'cityscape’ images.
Due to this fact, combined with the visterm scale invariantbe PLSA modeling generates
a representation for the city-panorama images which glearhtains building-related aspects,
and introduces confusion with the city-street class. I8 ttase, the abstraction level of PLSA
loses some of the discriminative elements of the BOV. Dué¢éounbalanced data set, the city-
street class beneficiates from this confusion, as shownstyedtuced misclassification rate with
respect to the city-panorama class. Furthermore, aspecteaned on th®3 data set, which
contains a relatively small amount of city-panorama imag®apared to city-street images. This
imbalance can explain the ambiguous aspect representdtithe city-panorama class and the
resulting poor classification performance.

Table Xl presents the evolution of the classification errtvew less labeled training data is
available. It shows that the loss of discriminative powetween the city-panorama and city-
street classes continue to affect the PLSA representatiahthat, in this task, the BOV approach
outperforms the PLSA model for reduced training data. Bo#thods, however, perform better
than the global approach.

The five-class experiment raises a more general issue. Astveglice more classes or labels,
the possibility of defining clear-cut scenes and of findingg®s that belong to only one class

diminishes, while the number of images whose content basldagseveral concepts increases.
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Perc. data 90% 10% 5% 2.5% 1%
#images 5727 636 318 159 64
PLSA  23.1(1.2) 27.9(2.2) 29.7(2.0) 33.1(2.5) 38.5(2.6)
BOV 20.8(2.1) 25.5(1.7) 28.3(1.3) 30.8(1.6) 37.2(3.4)
Baseline 30.1(1.1) 36.8(1.4) 39.3(1.4) 42.8(1.6) 49.9(3)

TABLE XI
COMPARISON BETWEENBOV, PLSA-O,AND BASELINE, FOR SVM TRAINED WITH REDUCED DATA ON THE 5-CLASS

PROBLEM.

With more classes, the task could be better formulated asyaotation problem rather than a
classification one. PLSA-based approaches have shown siraperformance for this task [23].

In the case of less confusing class definitions, the PLSA aggbr can be valid for other
multi-class problems. We have recently applied our apgraat a seven-class object data set
with good performance (88% classification rate), and obigisimilar conclusions with respect
to the properties of our approach [24].

We have performed additional experiments with more classeSection 1X where we inves-
tigate the application of both BOV and PLSA scene modelingrmblems with more classes
(13 and 6).

VIIl. A SPECFBASED IMAGE RANKING

With PLSA, aspects can be conveniently illustrated by thebst probable images in a data
set. Given an aspect images can be ranked according to:

P(2|d)P(d)
P(z)

where P(d) is considered as uniform. The top-ranked images for a giwped illustrate its

P(d]z) = x P(z | d), (6)

potential 'visual meaning’. Fig. 7 displays the 10 most @iolle images from the 668 test images
of the first split of theD1 data set, for seven out of 20 aspects learned obthéata set. The

top-ranked images representing aspects 1, 6, 8, and 16aHybelong to the landscape class.
More precisely, aspect 1 seems to be mainly related to hopamoramic scenes, aspect 6 and
8 to forest/vegetation, and aspect 16 to rocks. Converasjyect 4 and 12 are related to the

city class. However, as aspects are identified by analyziwegcb-occurrence of local visual
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patterns, they may be consistent from this point of view.(agpect 19 is consistent in terms of
texture) without allowing for a direct semantic interptaia. The results can be better appreciated
at http://carter.idiap.ch/aspeatanking/index.htmi

Considering the aspect-based image ranking as an infamitrieval system, the correspon-
dence between aspects and scene classes can be measuctisiebbj®efining thePrecision

and Recall paired values by:

Precision(r) = et Recqll(r) = felliet,

where Ret is the number of retrieved imageBgl is the total number of relevant images and
RelRet is the number of retrieved images that are relevant, we cerpuate the precision/recall
curves associated with each aspect-based image rankimidedng either city and landscape
gueries, as illustrated in Fig. 8. Those curves prove thatesaspects are clearly related to such
concepts, and confirm observations made previously withesto aspects 4, 6, 8, 12, and 16.
As expected, aspect 19 does not appear in either the citydst¢ape top precision/recall curves.
The landscape-related ranking from aspect 1 does not hotdeagy for higher recall values,
because the co-occurrences of the visterm patterns apgearhorizons that it captures is not
exclusive to the landscape class. Overall, these reshistrate that the latent structure identified
by PLSA highly correlates with the visual structure of outadalhis potentially makes PLSA

a very attractive tool for browsing/annotating unlabelege collections.

IX. EXPERIMENTS WITH OTHER DATA SETS

Given the recent appearance of other works and data setgks wn scene classification [11],
[42], we have also compared our framework to them. In [114,abthors tackle the classification
of 13 different scene types. In [42], the authors tackle tlassification of 6 different natural
scenes types, all collected from outdoor images. We presesfitort description of those data
sets in the next paragraphs.

13-class data set [11]This data set contains a total of 3859 images of approx. 6Q@OGL
resolution, varying in exact size and XY ratio. The images @istributed over 13 scene classes
as follows (the number in parenthesis indicates the numbéenages in each class): bedroom
(216), coast (360), forest (328), highway (260), insidg ¢B08), kitchen (210), living room
(289), mountain (374), open country (410), office (215)eetr(292), suburb (241), and tall
buildings (356) (available for download at: http://fagudice.uiuc.edu/feifeili/data sets.html).
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>
.l.

Fig. 7. The 10 most probable images from & data set for seven aspects (out of 20) learned orDBelata set.

6-class data set [42] his relatively small data set contains a total of 700 imagfegsolution

720 x 480 pixels. They are distributed over 6 natural scene classdsllasvs: coasts (142),
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Fig. 8. Precision/recall curves for the image ranking basedeach of the 20 individual aspects, relative to the lamusca
(left) and city (right) query. Each curve represents a @ifieraspect. Floor precision values correspond to the piiopoof

landscape(resp. city) images in the data set.

river/lakes (111), forests (103), plains (131), mountditig9), and sky/clouds (34).

These two data sets are challenging given their respectirear of classes and the intrinsic
ambiguities that arise from their definition. In the 13-cla@ata set for example, images from the
inside city and street categories share a very similar scengguration. Similarly, the differences
between bedroom and living room examples can be subtle elfbitlass data set, examples of
the coasts and waterscapes classes are hard to distin§h&sisame ambiguous class definition
was observed for our five-class classification task in Secdib-A.

In Section VII, we evaluated visterm vocabularies builtnfralifferent data sources, and
conducted a comparison of aspect representations learoedeiktra data (PLSA-O) or learned
on the same data used to learn the SVM classifier (PLSA-l)eGihat we have no extra set of
representative images for the 13-class or 6-class dataawenat present the same experiments
for these data sets. To keep consistency with the way in wiashlts are presented in [11],

[42], we report classification accuracy instead of clasifon error.

A. Classification results: 13-class

We first classify the images based on their BOV as in Sectidn Résults were obtained by

training a multi-class SVM using a 10-split protocol, as iecg&on VI-C. No parameter tuning
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class confusion matrix perf.

bedroom 30.6
coast 78.3

forest 89.0
highway 67.7
inside city 64.6
kitchen 40.0
living room 45.7
mountain 82.1
open country 60.5
office 77.2

street 72.3
suburb 89.2

tall buildings 66.9

Fig. 9. Classification accuracy for the BOV representationhe 13-class problem from [11]. The overall classificati@curacy
is 66.5%.

on the vocabulary was done in this case, as we directly apmyvbcabularyl;, used in
Section VII.

The confusion matrix for the 13 classes and the classificgigrformance per class are pre-
sented in Figure 9. The classification performance is sabatly higher than the one presented
by [11], which reported an overall classification performarof 52.5% when using the same
combination of detector/descriptors we adopted here (DEIG¥F) for learning their model. The
performance of our method is also slightly better than llest performance reported in [11]
(65.2%, obtained with a different detector/descriptorr:p@RID/SIFT). As we do not have
access to the individual per-image results of [11], we camssess the statistical significance
of these results, but we can nevertheless consider that@é dpproach is competitive.

We also applied the PLSA-I approach to solve the same cleatsifh problem, as in Sec-
tion VII-B. We learned PLSA with 40 aspects, since this is tluenber of aspects used in [11].
Results were obtained, as before, with a multi-class SVihechusing a 10-split protocol.

Figure 10 shows the performance of the PLSA-I represemtafibe classification accuracy
is higher than the one in [11] when using the (DOG+SIFT) corabon, but is lower than the

bestperformance reported in [11], and also lower that one obthinith BOV. The performance
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class confusion matrix perf.

bedroom 31.9
coast 65.3

forest 86.3
highway 58.8
inside city 63.6
kitchen 15.7
living room 45.0
mountain 73.8
open country 64.4
office 67.0

street 68.2
suburb 88.4

tall buildings 62.1

Fig. 10. Classification accuracy for the PLSA-I represéotatin the 13-class problem from [11]. The overall classifion
accuracy is 60.8%.

degradation between BOV and PLSA results from the same phen® observed for the five-
class experiments in Section VII-B. In the presence of a ligmber of classes, the PLSA
decomposition tends to result in a loss of important detfiisthe distinction of ambiguous
classes. As with the BOV case, we can also say that the PLS£agp remains competitive

with respect to [11].

B. Classification results: 6-class

The data set presented by Vogel et al. [42] is composed oftlasses than [11], with a total
of six natural scene types. The ambiguity between classitiefia is however more important,
and some images are difficult to classify in only one scene.tjijine number of examples per
class is significantly smaller than that in [11] and than tkre-filass data set in Section VII.

The multi-class SVM results, obtained using a 10-split @cot on the BOV representations
(Viooo vocabulary learned o3) are presented in Table XIl. In this case, our system has a
slightly reduced classification accuracy (61.9%) when carag with the performance presented
in [42](67.2%). Note, however, that these results have m@nbobtained using identical fea-

tures: [42] relies on a fixed grid, where a texture and colatuees are extracted. We believe
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Class confusion matrix perf.
coasts 59.9 99 21 8.5 183 1.459.8
river/lakes| 1.6 24.3 10.8 10.8 27.0 5.424.3
forests 29 58 816 49 49 0.0816
plains 183 6.1 8.4 527 115 3.152.7
mountains 11.2 89 2.2 28 73.7 11737
sky/cloudg 5.9 29 0.0 59 59 79479.4

overall 61.9

TABLE Xl

CLASSIFICATION ACCURACY FOR THEBOV REPRESENTATION IN THE 6-CLASS PROBLEM PRESENTED IN42].

that the difference in performance with respect to our waikes from the fact that natural

scene discrimination can benefit greatly from the use ofrcslamething we have not made use
of, but which in light of these results constitutes an issuewestigate in the future. Moreover,

the intermediate classification step proposed in [42] meguihe expensive manual labeling of
hundreds of regional descriptors, which is not needed incase.

Given the reduced set of examples per class, and the needaigreanumber of representative
examples to train a PLSA model, we could not perform the PLS¥#pproach for this 6-
class problem. However, in order to evaluate the performaricthe aspect representation for
these data, we use the previous PLSA model with 60 aspectettan theD3 data set (see
Section VII-B). The corresponding classification resulis, shown in Table XIll, indicate a
decrease in performance (52.1%) with respect to both BOV thadresults reported in [42].
The fact that the PLSA model has been learned onDBedata set, which does not contain
any coasts, river/lakes, or plain examples, likely ex@aime poor discrimination between the
6-classes when the aspect representation is used.

Overall, these experiments support some of the findingsradadan Section VII, namely that
modeling scenes as laag-of-vistermgperforms well even in problems with a large amount of
classes, and that PLSA modeling can find limitations in cagdarge amount of overlapping

classes. At the same time, these experiments offer othigrhiiss our framework is competitive

December 6, 2006 DRAFT



38

Class confusion matrix perf.
coasts 40.1 99 9.2 12.0 254 3.540.1
river/lakes| 20.7 21.6 11.7 12.6 30.6 2.[/21.6
forests 19 39 786 78 7.8 0.078.6
plains 20.6 6.9 115 359 214 3.835.9
mountains| 8.4 7.3 11.7 5.6 659 1.165.9
sky/cloudsg 14.7 0.0 0.0 8.8 59 70/670.6

overall 52.1

TABLE Xl

CLASSIFICATION FOR THEPLSA-OREPRESENTATIONIN THE 6-CLASS PROBLEM PRESENTED IN[42].

with recent approaches, and feature fusion mechanismsn(addlor) have a potential for an

increased classification performance.

X. CONCLUSION

Based on the results presented in this paper, we believahbgtiresented scene modeling
methodology is effective for solving scene classificatioobgpems. We have shown, with exten-
sive results, that it outperforms classical scene claasific methods. We have also shown that
it is able to handle a variety of problems without having tdegign the features used.

Regarding the specific contributions of this paper, we firsspnted results that demonstrate
that thebag-of-vistermspproach is adequate for scene classification, consigtaumiberforming
methods relying on a suite of hand-picked global featureshé second place, we also showed
that the PLSA-based representation is competitive withB®¥% in terms of performance and
results, in general, in a more graceful performance degjaadaith decreasing amount of training
data. This result is potentially relevant for the portapiand re-usability of future systems, since
it allows to reuse a classification system for a new problemgukess training data. Thirdly,
we also demonstrated that PLSA-based clustering of image=als visually coherent grouping
that we showed to be valuable for aspect-based image rankinglly, as part of our work,
we explored the visterm vocabulary co-occurrence progeriatnd compared them to those of

words in text documents. The results of such analysis shoesgresence of cases of synonymy
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and polysemy as in text words, but also showed other staigbroperties, such as sparsity, to
be different than those in text. This, we believe, is mainle do the vocabulary construction
methodology, and advocates for improved vocabulary coostmn approaches.

The description of a visual scene as a mixture of aspects imtaguing concept worth
of further exploration. We are currently exploring the edien of PLSA modeling for scene
segmentation. Further areas to investigate with the appraige the extraction of more meaningful
vocabularies, the study of the influence of the degree ofriamee of the local descriptors, and
the definition of feature fusion mechanisms (e.g. color awall descriptors) in the latent space

framework.
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